# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import time from typing import Callable, List, Optional, Union import numpy as np import paddle from paddlenlp.transformers import CLIPFeatureExtractor, CLIPTokenizer from ...fastdeploy_utils import FastDeployRuntimeModel from ...pipeline_utils import DiffusionPipeline from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...schedulers.preconfig import ( PreconfigEulerAncestralDiscreteScheduler, PreconfigLMSDiscreteScheduler, ) from ...utils import logging from . import StableDiffusionPipelineOutput logger = logging.get_logger(__name__) class FastDeployStableDiffusionPipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving etc.) Args: vae_encoder ([`FastDeployRuntimeModel`]): Variational Auto-Encoder (VAE) Model to encode images to latent representations. vae_decoder ([`FastDeployRuntimeModel`]): Variational Auto-Encoder (VAE) Model to decode images from latent representations. text_encoder ([`FastDeployRuntimeModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`FastDeployRuntimeModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`] or [`DPMSolverMultistepScheduler`]. safety_checker ([`FastDeployRuntimeModel`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ _optional_components = ["vae_encoder", "safety_checker", "feature_extractor"] def __init__( self, vae_encoder: FastDeployRuntimeModel, vae_decoder: FastDeployRuntimeModel, text_encoder: FastDeployRuntimeModel, tokenizer: CLIPTokenizer, unet: FastDeployRuntimeModel, scheduler: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, PreconfigLMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, PreconfigEulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ], safety_checker: FastDeployRuntimeModel, feature_extractor: CLIPFeatureExtractor, requires_safety_checker: bool = True, ): super().__init__() if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. PaddleNLP team, diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae_encoder=vae_encoder, vae_decoder=vae_decoder, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.register_to_config(requires_safety_checker=requires_safety_checker) def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `list(int)`): prompt to be encoded num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). """ batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids if not np.array_equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_embeddings = self.text_encoder(input_ids=text_input_ids.astype(np.int64))[0] text_embeddings = np.repeat(text_embeddings, num_images_per_prompt, axis=0) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] * batch_size elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="np", ) uncond_embeddings = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int64))[0] uncond_embeddings = np.repeat(uncond_embeddings, num_images_per_prompt, axis=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) return text_embeddings def run_safety_checker(self, image, dtype): if self.safety_checker is not None: safety_checker_input = self.feature_extractor( self.numpy_to_pil(image), return_tensors="np" ).pixel_values.astype(dtype) # There will throw an error if use safety_checker batchsize>1 images, has_nsfw_concept = [], [] for i in range(image.shape[0]): image_i, has_nsfw_concept_i = self.safety_checker( clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] ) images.append(image_i) has_nsfw_concept.append(has_nsfw_concept_i[0]) image = np.concatenate(images) else: has_nsfw_concept = None return image, has_nsfw_concept def decode_latents(self, latents): latents = 1 / 0.18215 * latents latents_shape = latents.shape vae_output_shape = [latents_shape[0], 3, latents_shape[2] * 8, latents_shape[3] * 8] images_vae = paddle.zeros(vae_output_shape, dtype="float32") vae_input_name = self.vae_decoder.model.get_input_info(0).name vae_output_name = self.vae_decoder.model.get_output_info(0).name self.vae_decoder.zero_copy_infer( prebinded_inputs={vae_input_name: latents}, prebinded_outputs={vae_output_name: images_vae}, share_with_raw_ptr=True, ) images_vae = paddle.clip(images_vae / 2 + 0.5, 0, 1) images = images_vae.transpose([0, 2, 3, 1]) return images.numpy() def prepare_extra_step_kwargs(self, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta return extra_step_kwargs def check_var_kwargs_of_scheduler_func(self, scheduler_func): sig = inspect.signature(scheduler_func) params = sig.parameters.values() has_kwargs = any([True for p in params if p.kind == p.VAR_KEYWORD]) return has_kwargs def check_inputs(self, prompt, height, width, callback_steps): if not isinstance(prompt, str) and not isinstance(prompt, list): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None): if generator is None: generator = np.random latents_shape = (batch_size, num_channels_latents, height // 8, width // 8) if latents is None: latents = generator.randn(*latents_shape).astype(dtype) elif latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") # scale the initial noise by the standard deviation required by the scheduler latents = latents * float(self.scheduler.init_noise_sigma) return latents def __call__( self, prompt: Union[str, List[str]], height: Optional[int] = 512, width: Optional[int] = 512, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[np.random.RandomState] = None, latents: Optional[np.ndarray] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, np.ndarray], None]] = None, callback_steps: Optional[int] = 1, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, 512): The height in pixels of the generated image. width (`int`, *optional*, 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`np.random.RandomState`, *optional*): A np.random.RandomState to make generation deterministic. latents (`np.ndarray`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # 1. Check inputs. Raise error if not correct self.check_inputs(prompt, height, width, callback_steps) # 2. Define call parameters batch_size = 1 if isinstance(prompt, str) else len(prompt) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt start_time_encode_prompt = time.perf_counter() text_embeddings = self._encode_prompt( prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) print("_encode_prompt latency:", time.perf_counter() - start_time_encode_prompt) # 4. Prepare timesteps timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = 4 latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, text_embeddings.dtype, generator, latents, ) if isinstance(latents, np.ndarray): latents = paddle.to_tensor(latents) # 6. Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(eta) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order scheduler_support_kwagrs_scale_input = self.check_var_kwargs_of_scheduler_func( self.scheduler.scale_model_input ) scheduler_support_kwagrs_step = self.check_var_kwargs_of_scheduler_func(self.scheduler.step) unet_output_name = self.unet.model.get_output_info(0).name unet_input_names = [self.unet.model.get_input_info(i).name for i in range(self.unet.model.num_inputs())] with self.progress_bar(total=num_inference_steps) as progress_bar: text_embeddings = paddle.to_tensor(text_embeddings, dtype="float32") for i, t in enumerate(timesteps): noise_pred_unet = paddle.zeros( [2 * batch_size * num_images_per_prompt, 4, height // 8, width // 8], dtype="float32" ) # expand the latents if we are doing classifier free guidance latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents if scheduler_support_kwagrs_scale_input: latent_model_input = self.scheduler.scale_model_input(latent_model_input, t, step_index=i) else: latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual self.unet.zero_copy_infer( prebinded_inputs={ unet_input_names[0]: latent_model_input, unet_input_names[1]: t, unet_input_names[2]: text_embeddings, }, prebinded_outputs={unet_output_name: noise_pred_unet}, share_with_raw_ptr=True, ) # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred_unet.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 if scheduler_support_kwagrs_step: scheduler_output = self.scheduler.step( noise_pred, t, latents, step_index=i, return_pred_original_sample=False, **extra_step_kwargs ) else: scheduler_output = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs) latents = scheduler_output.prev_sample if i == num_inference_steps - 1: # sync for accuracy it/s measure paddle.device.cuda.synchronize() # call the callback, if provided if i == num_inference_steps - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) # 8. Post-processing time_start_decoder = time.perf_counter() image = self.decode_latents(latents) print("decoder latency:", time.perf_counter() - time_start_decoder) # 9. Run safety checker image, has_nsfw_concept = self.run_safety_checker(image, text_embeddings.dtype) # 10. Convert to PIL if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)