File size: 1,535 Bytes
dbce1bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
# Objects365 https://www.objects365.org labels JSON to YOLO script
# 1. Download Object 365 from the Object 365 website And unpack all images in datasets/object365/images
# 2. Place this file and zhiyuan_objv2_train.json file in datasets/objects365
# 3. Execute this file from datasets/object365 path
# /datasets
# /objects365
# /images
# /labels
from pycocotools.coco import COCO
coco = COCO("zhiyuan_objv2_train.json")
cats = coco.loadCats(coco.getCatIds())
nms = [cat["name"] for cat in cats]
print("COCO categories: \n{}\n".format(" ".join(nms)))
for categoryId, cat in enumerate(nms):
catIds = coco.getCatIds(catNms=[cat])
imgIds = coco.getImgIds(catIds=catIds)
print(cat)
# Create a subfolder in this directory called "labels". This is where the annotations will be saved in YOLO format
for im in coco.loadImgs(imgIds):
width, height = im["width"], im["height"]
path = im["file_name"].split("/")[-1] # image filename
try:
with open("labels/train/" + path.replace(".jpg", ".txt"), "a+") as file:
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
for a in coco.loadAnns(annIds):
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
x, y = x + w / 2, y + h / 2 # xy to center
file.write(f"{categoryId} {x / width:.5f} {y / height:.5f} {w / width:.5f} {h / height:.5f}\n")
except Exception as e:
print(e)
|