File size: 41,454 Bytes
4364751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "advanced_logging_test.ipynb",
      "provenance": [],
      "authorship_tag": "ABX9TyPFy7j0vPOSgtY60fQfXjdq",
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/alexstoken/yolov5/blob/advanced_logging/advanced_logging_test.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "-cMOOhIGFBJa",
        "colab_type": "text"
      },
      "source": [
        "# **Test Advanced Logging Branch Features**"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "YwXvkCXB9Yif",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 136
        },
        "outputId": "9a7ab9a3-c73d-4dae-ae35-237c9d84728f"
      },
      "source": [
        "!git clone -b advanced_logging https://github.com/alexstoken/yolov5.git"
      ],
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Cloning into 'yolov5'...\n",
            "remote: Enumerating objects: 53, done.\u001b[K\n",
            "remote: Counting objects: 100% (53/53), done.\u001b[K\n",
            "remote: Compressing objects: 100% (39/39), done.\u001b[K\n",
            "remote: Total 1223 (delta 28), reused 35 (delta 14), pack-reused 1170\u001b[K\n",
            "Receiving objects: 100% (1223/1223), 3.50 MiB | 3.20 MiB/s, done.\n",
            "Resolving deltas: 100% (811/811), done.\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "pNJbzKWK9r3l",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        },
        "outputId": "67d82040-b5af-48b5-fb93-4ed962e48680"
      },
      "source": [
        "!pip install -r yolov5/requirements.txt  # install dependencies\n",
        "%cd yolov5\n",
        "\n",
        "import torch\n",
        "from IPython.display import Image, clear_output  # to display images\n",
        "from utils.google_utils import gdrive_download  # to download models/datasets\n",
        "\n",
        "clear_output()\n",
        "print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))"
      ],
      "execution_count": 2,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Setup complete. Using torch 1.5.1+cu101 _CudaDeviceProperties(name='Tesla K80', major=3, minor=7, total_memory=11441MB, multi_processor_count=13)\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "amtgnroz901E",
        "colab_type": "text"
      },
      "source": [
        "## Train"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "0NSb22om9ybq",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        },
        "outputId": "ee202bce-ad59-4bba-fcd2-77a3dd98fd4a"
      },
      "source": [
        "# Download tutorial dataset coco128.yaml\n",
        "gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip')  # tutorial dataset\n",
        "!mv ./coco128 ../  # move folder alongside /yolov5"
      ],
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Downloading https://drive.google.com/uc?export=download&id=1n_oKgR81BJtqk75b00eAjdv03qVCQn2f as coco128.zip... unzipping... Done (5.1s)\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "71hxUTfvFJky",
        "colab_type": "text"
      },
      "source": [
        "**Verify Help Arg Works**"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "6SLw4hNi-C1L",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 544
        },
        "outputId": "e0ca506c-ddfb-4b86-d5e8-ca98729672b9"
      },
      "source": [
        "!python train.py --help"
      ],
      "execution_count": 4,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex\n",
            "usage: train.py [-h] [--cfg CFG] [--data DATA] [--hyp HYP] [--epochs EPOCHS]\n",
            "                [--batch-size BATCH_SIZE] [--img-size IMG_SIZE [IMG_SIZE ...]]\n",
            "                [--rect] [--resume [RESUME]] [--nosave] [--notest]\n",
            "                [--noautoanchor] [--evolve] [--bucket BUCKET] [--cache-images]\n",
            "                [--weights WEIGHTS] [--name NAME] [--device DEVICE]\n",
            "                [--multi-scale] [--single-cls]\n",
            "\n",
            "optional arguments:\n",
            "  -h, --help            show this help message and exit\n",
            "  --cfg CFG             model cfg path[*.yaml]\n",
            "  --data DATA           data cfg path [*.yaml]\n",
            "  --hyp HYP             hyp cfg path [*.yaml].\n",
            "  --epochs EPOCHS\n",
            "  --batch-size BATCH_SIZE\n",
            "  --img-size IMG_SIZE [IMG_SIZE ...]\n",
            "                        train,test sizes. Assumes square imgs.\n",
            "  --rect                rectangular training\n",
            "  --resume [RESUME]     resume training from given path/to/last.pt, or most\n",
            "                        recent run if blank.\n",
            "  --nosave              only save final checkpoint\n",
            "  --notest              only test final epoch\n",
            "  --noautoanchor        disable autoanchor check\n",
            "  --evolve              evolve hyperparameters\n",
            "  --bucket BUCKET       gsutil bucket\n",
            "  --cache-images        cache images for faster training\n",
            "  --weights WEIGHTS     initial weights path\n",
            "  --name NAME           renames results.txt to results_name.txt if supplied\n",
            "  --device DEVICE       cuda device, i.e. 0 or 0,1,2,3 or cpu\n",
            "  --multi-scale         vary img-size +/- 50%\n",
            "  --single-cls          train as single-class dataset\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ou1ochfx-VTr",
        "colab_type": "text"
      },
      "source": [
        "**Run with hyperparameters from yaml file**"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "wLHoZYbk-EqT",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "outputId": "63ed4676-22b8-4852-e663-5c3cfefe19df"
      },
      "source": [
        "!python train.py --img 320 --batch 32 --epochs 3 --data ./data/coco128.yaml --cfg ./models/yolov5s.yaml --weights yolov5s.pt --name tutorial --cache --hyp new_hyp.yaml"
      ],
      "execution_count": 9,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex\n",
            "Namespace(batch_size=32, bucket='', cache_images=True, cfg='./models/yolov5s.yaml', data='./data/coco128.yaml', device='', epochs=3, evolve=False, hyp='new_hyp.yaml', img_size=[320], multi_scale=False, name='tutorial', noautoanchor=False, nosave=False, notest=False, rect=False, resume=False, single_cls=False, weights='yolov5s.pt')\n",
            "Using CUDA device0 _CudaDeviceProperties(name='Tesla K80', total_memory=11441MB)\n",
            "\n",
            "2020-07-07 16:03:25.684542: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1\n",
            "Using FocalLoss(gamma=1)\n",
            "Beginning training with {'optimizer': 'adam', 'lr0': 0.001, 'momentum': 0.9, 'weight_decay': 0.000625, 'giou': 0.15, 'cls': 0.58, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2, 'anchor_t': 10.0, 'fl_gamma': 1.0, 'hsv_h': 0.014, 'hsv_s': 0.68, 'hsv_v': 0.36, 'degrees': 20.0, 'translate': 0.0, 'scale': 0.5, 'shear': 0.0}\n",
            "\n",
            "\n",
            "Start Tensorboard with \"tensorboard --logdir=runs\", view at http://localhost:6006/\n",
            "\n",
            "                 from  n    params  module                                  arguments                     \n",
            "  0                -1  1      3520  models.common.Focus                     [3, 32, 3]                    \n",
            "  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                \n",
            "  2                -1  1     19904  models.common.BottleneckCSP             [64, 64, 1]                   \n",
            "  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               \n",
            "  4                -1  1    161152  models.common.BottleneckCSP             [128, 128, 3]                 \n",
            "  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              \n",
            "  6                -1  1    641792  models.common.BottleneckCSP             [256, 256, 3]                 \n",
            "  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              \n",
            "  8                -1  1    656896  models.common.SPP                       [512, 512, [5, 9, 13]]        \n",
            "  9                -1  1   1248768  models.common.BottleneckCSP             [512, 512, 1, False]          \n",
            " 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
            " 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
            " 12           [-1, 6]  1         0  models.common.Concat                    [1]                           \n",
            " 13                -1  1    378624  models.common.BottleneckCSP             [512, 256, 1, False]          \n",
            " 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
            " 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
            " 16           [-1, 4]  1         0  models.common.Concat                    [1]                           \n",
            " 17                -1  1     95104  models.common.BottleneckCSP             [256, 128, 1, False]          \n",
            " 18                -1  1     32895  torch.nn.modules.conv.Conv2d            [128, 255, 1, 1]              \n",
            " 19                -2  1    147712  models.common.Conv                      [128, 128, 3, 2]              \n",
            " 20          [-1, 14]  1         0  models.common.Concat                    [1]                           \n",
            " 21                -1  1    313088  models.common.BottleneckCSP             [256, 256, 1, False]          \n",
            " 22                -1  1     65535  torch.nn.modules.conv.Conv2d            [256, 255, 1, 1]              \n",
            " 23                -2  1    590336  models.common.Conv                      [256, 256, 3, 2]              \n",
            " 24          [-1, 10]  1         0  models.common.Concat                    [1]                           \n",
            " 25                -1  1   1248768  models.common.BottleneckCSP             [512, 512, 1, False]          \n",
            " 26                -1  1    130815  torch.nn.modules.conv.Conv2d            [512, 255, 1, 1]              \n",
            " 27      [-1, 22, 18]  1         0  models.yolo.Detect                      [80, [[116, 90, 156, 198, 373, 326], [30, 61, 62, 45, 59, 119], [10, 13, 16, 30, 33, 23]]]\n",
            "Model Summary: 191 layers, 7.46816e+06 parameters, 7.46816e+06 gradients\n",
            "\n",
            "Optimizer groups: 62 .bias, 70 conv.weight, 59 other\n",
            "/usr/local/lib/python3.6/dist-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`.  Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate\n",
            "  \"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate\", UserWarning)\n",
            "Caching labels ../coco128/labels/train2017 (126 found, 0 missing, 2 empty, 0 duplicate, for 128 images): 100% 128/128 [00:00<00:00, 6343.82it/s]\n",
            "Caching images (0.0GB): 100% 128/128 [00:00<00:00, 137.36it/s]\n",
            "Caching labels ../coco128/labels/train2017 (126 found, 0 missing, 2 empty, 0 duplicate, for 128 images): 100% 128/128 [00:00<00:00, 4530.37it/s]\n",
            "Caching images (0.0GB): 100% 128/128 [00:01<00:00, 124.18it/s]\n",
            "\n",
            "Analyzing anchors... Best Possible Recall (BPR) = 0.9968\n",
            "Image sizes 320 train, 320 test\n",
            "Using 2 dataloader workers\n",
            "Starting training for 3 epochs...\n",
            "\n",
            "     Epoch   gpu_mem      GIoU       obj       cls     total   targets  img_size\n",
            "       0/2     2.71G    0.2492   0.08469   0.01266    0.3466       469       320: 100% 4/4 [00:06<00:00,  1.56s/it]\n",
            "               Class      Images     Targets           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:21<00:00,  5.39s/it]\n",
            "                 all         128         929      0.0866        0.26        0.14      0.0587\n",
            "\n",
            "     Epoch   gpu_mem      GIoU       obj       cls     total   targets  img_size\n",
            "       1/2     2.67G     0.245   0.07209   0.01212    0.3292       424       320: 100% 4/4 [00:02<00:00,  1.69it/s]\n",
            "               Class      Images     Targets           P           R      [email protected]  [email protected]:.95:   0% 0/4 [00:00<?, ?it/s]tcmalloc: large alloc 1076248576 bytes == 0x6d04e000 @  0x7fd07507bb6b 0x7fd07509b379 0x7fd029dce04e 0x7fd029dcff4a 0x7fd062ec0f3b 0x7fd062b0ff7e 0x7fd062d79075 0x7fd062d6b081 0x7fd062d6a5ce 0x7fd062d6b081 0x7fd0647c173a 0x7fd062d6b081 0x7fd062b0ad17 0x7fd062b0b940 0x7fd062e29fda 0x7fd0648a8ebe 0x7fd062d6b532 0x7fd010be3a51 0x7fd010be2dca 0x7fd010be22f1 0x7fd010be19b7 0x7fd010be0f74 0x7fd010bdf3a3 0x7fd010b47a1e 0x7fd010b58607 0x7fd064b4df34 0x7fd07142a49f 0x7fd0713f9a94 0x7fd0710f1213 0x50a635 0x50bfb4\n",
            "tcmalloc: large alloc 1448099840 bytes == 0x6d04e000 @  0x7fd07507bb6b 0x7fd07509b379 0x7fd029dce04e 0x7fd029dcff4a 0x7fd062ec0f3b 0x7fd062b0ff7e 0x7fd062d79075 0x7fd062d6b081 0x7fd062d6a5ce 0x7fd062d6b081 0x7fd0647c173a 0x7fd062d6b081 0x7fd062b0ad17 0x7fd062b0b940 0x7fd062e29fda 0x7fd0648a8ebe 0x7fd062d6b532 0x7fd010be3a51 0x7fd010be2dca 0x7fd010be22f1 0x7fd010be19b7 0x7fd010be0f74 0x7fd010bdf3a3 0x7fd010b47a1e 0x7fd010b58607 0x7fd064b4df34 0x7fd07142a49f 0x7fd0713f9a94 0x7fd0710f1213 0x50a635 0x50bfb4\n",
            "tcmalloc: large alloc 1466916864 bytes == 0x6d04e000 @  0x7fd07507bb6b 0x7fd07509b379 0x7fd029dce04e 0x7fd029dcff4a 0x7fd062ec0f3b 0x7fd062b0ff7e 0x7fd062d79075 0x7fd062d6b081 0x7fd062d6a5ce 0x7fd062d6b081 0x7fd0647c173a 0x7fd062d6b081 0x7fd062b0ad17 0x7fd062b0b940 0x7fd062e29fda 0x7fd0648a8ebe 0x7fd062d6b532 0x7fd010be3a51 0x7fd010be2dca 0x7fd010be22f1 0x7fd010be19b7 0x7fd010be0f74 0x7fd010bdf3a3 0x7fd010b47a1e 0x7fd010b58607 0x7fd064b4df34 0x7fd07142a49f 0x7fd0713f9a94 0x7fd0710f1213 0x50a635 0x50bfb4\n",
            "               Class      Images     Targets           P           R      [email protected]  [email protected]:.95:  25% 1/4 [00:12<00:37, 12.65s/it]tcmalloc: large alloc 1618354176 bytes == 0x6d04e000 @  0x7fd07507bb6b 0x7fd07509b379 0x7fd029dce04e 0x7fd029dcff4a 0x7fd062ec0f3b 0x7fd062b0ff7e 0x7fd062d79075 0x7fd062d6b081 0x7fd062d6a5ce 0x7fd062d6b081 0x7fd0647c173a 0x7fd062d6b081 0x7fd062b0ad17 0x7fd062b0b940 0x7fd062e29fda 0x7fd0648a8ebe 0x7fd062d6b532 0x7fd010be3a51 0x7fd010be2dca 0x7fd010be22f1 0x7fd010be19b7 0x7fd010be0f74 0x7fd010bdf3a3 0x7fd010b47a1e 0x7fd010b58607 0x7fd064b4df34 0x7fd07142a49f 0x7fd0713f9a94 0x7fd0710f1213 0x50a635 0x50bfb4\n",
            "tcmalloc: large alloc 1809465344 bytes == 0x6d04e000 @  0x7fd07507bb6b 0x7fd07509b379 0x7fd029dce04e 0x7fd029dcff4a 0x7fd062ec0f3b 0x7fd062b0ff7e 0x7fd062d79075 0x7fd062d6b081 0x7fd062d6a5ce 0x7fd062d6b081 0x7fd0647c173a 0x7fd062d6b081 0x7fd062b0ad17 0x7fd062b0b940 0x7fd062e29fda 0x7fd0648a8ebe 0x7fd062d6b532 0x7fd010be3a51 0x7fd010be2dca 0x7fd010be22f1 0x7fd010be19b7 0x7fd010be0f74 0x7fd010bdf3a3 0x7fd010b47a1e 0x7fd010b58607 0x7fd064b4df34 0x7fd07142a49f 0x7fd0713f9a94 0x7fd0710f1213 0x50a635 0x50bfb4\n",
            "               Class      Images     Targets           P           R      [email protected]  [email protected]:.95:  50% 2/4 [00:23<00:23, 11.97s/it]tcmalloc: large alloc 2126405632 bytes == 0x6d04e000 @  0x7fd07507bb6b 0x7fd07509b379 0x7fd029dce04e 0x7fd029dcff4a 0x7fd062ec0f3b 0x7fd062b0ff7e 0x7fd062d79075 0x7fd062d6b081 0x7fd062d6a5ce 0x7fd062d6b081 0x7fd0647c173a 0x7fd062d6b081 0x7fd062b0ad17 0x7fd062b0b940 0x7fd062e29fda 0x7fd0648a8ebe 0x7fd062d6b532 0x7fd010be3a51 0x7fd010be2dca 0x7fd010be22f1 0x7fd010be19b7 0x7fd010be0f74 0x7fd010bdf3a3 0x7fd010b47a1e 0x7fd010b58607 0x7fd064b4df34 0x7fd07142a49f 0x7fd0713f9a94 0x7fd0710f1213 0x50a635 0x50bfb4\n",
            "tcmalloc: large alloc 2575089664 bytes == 0x6d04e000 @  0x7fd07507bb6b 0x7fd07509b379 0x7fd029dce04e 0x7fd029dcff4a 0x7fd062ec0f3b 0x7fd062b0ff7e 0x7fd062d79075 0x7fd062d6b081 0x7fd062d6a5ce 0x7fd062d6b081 0x7fd0647c173a 0x7fd062d6b081 0x7fd062b0ad17 0x7fd062b0b940 0x7fd062e29fda 0x7fd0648a8ebe 0x7fd062d6b532 0x7fd010be3a51 0x7fd010be2dca 0x7fd010be22f1 0x7fd010be19b7 0x7fd010be0f74 0x7fd010bdf3a3 0x7fd010b47a1e 0x7fd010b58607 0x7fd064b4df34 0x7fd07142a49f 0x7fd0713f9a94 0x7fd0710f1213 0x50a635 0x50bfb4\n",
            "               Class      Images     Targets           P           R      [email protected]  [email protected]:.95:  75% 3/4 [00:33<00:11, 11.55s/it]tcmalloc: large alloc 2550161408 bytes == 0x6d04e000 @  0x7fd07507bb6b 0x7fd07509b379 0x7fd029dce04e 0x7fd029dcff4a 0x7fd062ec0f3b 0x7fd062b0ff7e 0x7fd062d79075 0x7fd062d6b081 0x7fd062d6a5ce 0x7fd062d6b081 0x7fd0647c173a 0x7fd062d6b081 0x7fd062b0ad17 0x7fd062b0b940 0x7fd062e29fda 0x7fd0648a8ebe 0x7fd062d6b532 0x7fd010be3a51 0x7fd010be2dca 0x7fd010be22f1 0x7fd010be19b7 0x7fd010be0f74 0x7fd010bdf3a3 0x7fd010b47a1e 0x7fd010b58607 0x7fd064b4df34 0x7fd07142a49f 0x7fd0713f9a94 0x7fd0710f1213 0x50a635 0x50bfb4\n",
            "               Class      Images     Targets           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:44<00:00, 11.08s/it]\n",
            "                 all         128         929     0.00153      0.0283     0.00768       0.002\n",
            "\n",
            "     Epoch   gpu_mem      GIoU       obj       cls     total   targets  img_size\n",
            "       2/2     9.18G    0.2386   0.06668    0.0113    0.3166       358       320: 100% 4/4 [00:02<00:00,  1.65it/s]\n",
            "               Class      Images     Targets           P           R      [email protected]  [email protected]:.95:  50% 2/4 [00:21<00:22, 11.30s/it]tcmalloc: large alloc 2955386880 bytes == 0x6d04e000 @  0x7fd07507bb6b 0x7fd07509b379 0x7fd029dce04e 0x7fd029dcff4a 0x7fd062ec0f3b 0x7fd062b0ff7e 0x7fd062d79075 0x7fd062d6b081 0x7fd062d6a5ce 0x7fd062d6b081 0x7fd0647c173a 0x7fd062d6b081 0x7fd062b0ad17 0x7fd062b0b940 0x7fd062e29fda 0x7fd0648a8ebe 0x7fd062d6b532 0x7fd010be3a51 0x7fd010be2dca 0x7fd010be22f1 0x7fd010be19b7 0x7fd010be0f74 0x7fd010bdf3a3 0x7fd010b47a1e 0x7fd010b58607 0x7fd064b4df34 0x7fd07142a49f 0x7fd0713f9a94 0x7fd0710f1213 0x50a635 0x50bfb4\n",
            "               Class      Images     Targets           P           R      [email protected]  [email protected]:.95:  75% 3/4 [00:32<00:11, 11.11s/it]tcmalloc: large alloc 3214819328 bytes == 0x6d04e000 @  0x7fd07507bb6b 0x7fd07509b379 0x7fd029dce04e 0x7fd029dcff4a 0x7fd062ec0f3b 0x7fd062b0ff7e 0x7fd062d79075 0x7fd062d6b081 0x7fd062d6a5ce 0x7fd062d6b081 0x7fd0647c173a 0x7fd062d6b081 0x7fd062b0ad17 0x7fd062b0b940 0x7fd062e29fda 0x7fd0648a8ebe 0x7fd062d6b532 0x7fd010be3a51 0x7fd010be2dca 0x7fd010be22f1 0x7fd010be19b7 0x7fd010be0f74 0x7fd010bdf3a3 0x7fd010b47a1e 0x7fd010b58607 0x7fd064b4df34 0x7fd07142a49f 0x7fd0713f9a94 0x7fd0710f1213 0x50a635 0x50bfb4\n",
            "               Class      Images     Targets           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:43<00:00, 10.78s/it]\n",
            "                 all         128         929     0.00137      0.0103     0.00455     0.00129\n",
            "Optimizer stripped from runs/Jul07_16-03-25_7d20d25984catutorial/weights/last_tutorial.pt\n",
            "Optimizer stripped from runs/Jul07_16-03-25_7d20d25984catutorial/weights/best_tutorial.pt\n",
            "3 epochs completed in 0.034 hours.\n",
            "\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ai02PVU6BsOT",
        "colab_type": "text"
      },
      "source": [
        "**Resume from last run**"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "tPBo4h3xCIJq",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "outputId": "a5f66250-e624-49d3-c1ae-eaa1168951f8"
      },
      "source": [
        "!python train.py --img 320 --batch 32 --epochs 5 --data ./data/coco128.yaml --cfg ./models/yolov5s.yaml --name tutorial --cache --resume"
      ],
      "execution_count": 18,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex\n",
            "Resuming training from ./runs/Jul07_16-15-02_7d20d25984catutorial/weights/last.pt\n",
            "Namespace(batch_size=32, bucket='', cache_images=True, cfg='./models/yolov5s.yaml', data='./data/coco128.yaml', device='', epochs=5, evolve=False, hyp='', img_size=[320], multi_scale=False, name='tutorial', noautoanchor=False, nosave=False, notest=False, rect=False, resume='get_last', single_cls=False, weights='./runs/Jul07_16-15-02_7d20d25984catutorial/weights/last.pt')\n",
            "Using CUDA device0 _CudaDeviceProperties(name='Tesla K80', total_memory=11441MB)\n",
            "\n",
            "2020-07-07 16:16:11.652288: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1\n",
            "Beginning training with {'optimizer': 'SGD', 'lr0': 0.01, 'momentum': 0.937, 'weight_decay': 0.0005, 'giou': 0.05, 'cls': 0.58, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2, 'anchor_t': 4.0, 'fl_gamma': 0.0, 'hsv_h': 0.014, 'hsv_s': 0.68, 'hsv_v': 0.36, 'degrees': 0.0, 'translate': 0.0, 'scale': 0.5, 'shear': 0.0}\n",
            "\n",
            "\n",
            "Start Tensorboard with \"tensorboard --logdir=runs\", view at http://localhost:6006/\n",
            "\n",
            "                 from  n    params  module                                  arguments                     \n",
            "  0                -1  1      3520  models.common.Focus                     [3, 32, 3]                    \n",
            "  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                \n",
            "  2                -1  1     19904  models.common.BottleneckCSP             [64, 64, 1]                   \n",
            "  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               \n",
            "  4                -1  1    161152  models.common.BottleneckCSP             [128, 128, 3]                 \n",
            "  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              \n",
            "  6                -1  1    641792  models.common.BottleneckCSP             [256, 256, 3]                 \n",
            "  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              \n",
            "  8                -1  1    656896  models.common.SPP                       [512, 512, [5, 9, 13]]        \n",
            "  9                -1  1   1248768  models.common.BottleneckCSP             [512, 512, 1, False]          \n",
            " 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
            " 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
            " 12           [-1, 6]  1         0  models.common.Concat                    [1]                           \n",
            " 13                -1  1    378624  models.common.BottleneckCSP             [512, 256, 1, False]          \n",
            " 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
            " 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
            " 16           [-1, 4]  1         0  models.common.Concat                    [1]                           \n",
            " 17                -1  1     95104  models.common.BottleneckCSP             [256, 128, 1, False]          \n",
            " 18                -1  1     32895  torch.nn.modules.conv.Conv2d            [128, 255, 1, 1]              \n",
            " 19                -2  1    147712  models.common.Conv                      [128, 128, 3, 2]              \n",
            " 20          [-1, 14]  1         0  models.common.Concat                    [1]                           \n",
            " 21                -1  1    313088  models.common.BottleneckCSP             [256, 256, 1, False]          \n",
            " 22                -1  1     65535  torch.nn.modules.conv.Conv2d            [256, 255, 1, 1]              \n",
            " 23                -2  1    590336  models.common.Conv                      [256, 256, 3, 2]              \n",
            " 24          [-1, 10]  1         0  models.common.Concat                    [1]                           \n",
            " 25                -1  1   1248768  models.common.BottleneckCSP             [512, 512, 1, False]          \n",
            " 26                -1  1    130815  torch.nn.modules.conv.Conv2d            [512, 255, 1, 1]              \n",
            " 27      [-1, 22, 18]  1         0  models.yolo.Detect                      [80, [[116, 90, 156, 198, 373, 326], [30, 61, 62, 45, 59, 119], [10, 13, 16, 30, 33, 23]]]\n",
            "Model Summary: 191 layers, 7.46816e+06 parameters, 7.46816e+06 gradients\n",
            "\n",
            "Optimizer groups: 62 .bias, 70 conv.weight, 59 other\n",
            "/usr/local/lib/python3.6/dist-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`.  Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate\n",
            "  \"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate\", UserWarning)\n",
            "Caching labels ../coco128/labels/train2017 (126 found, 0 missing, 2 empty, 0 duplicate, for 128 images): 100% 128/128 [00:00<00:00, 6135.81it/s]\n",
            "Caching images (0.0GB): 100% 128/128 [00:00<00:00, 137.74it/s]\n",
            "Caching labels ../coco128/labels/train2017 (126 found, 0 missing, 2 empty, 0 duplicate, for 128 images): 100% 128/128 [00:00<00:00, 5008.22it/s]\n",
            "Caching images (0.0GB): 100% 128/128 [00:01<00:00, 127.06it/s]\n",
            "\n",
            "Analyzing anchors... Best Possible Recall (BPR) = 0.9828. Attempting to generate improved anchors, please wait...\n",
            "WARNING: Extremely small objects found. 35 of 929 labels are < 3 pixels in width or height.\n",
            "Running kmeans for 9 anchors on 927 points...\n",
            "thr=0.25: 0.9720 best possible recall, 3.73 anchors past thr\n",
            "n=9, img_size=320, metric_all=0.260/0.653-mean/best, past_thr=0.471-mean: 9,12,  32,20,  27,49,  74,43,  54,92,  77,164,  160,109,  182,240,  302,188\n",
            "Evolving anchors with Genetic Algorithm: fitness = 0.6628: 100% 1000/1000 [00:00<00:00, 1204.58it/s]\n",
            "thr=0.25: 0.9860 best possible recall, 3.83 anchors past thr\n",
            "n=9, img_size=320, metric_all=0.265/0.664-mean/best, past_thr=0.471-mean: 8,10,  22,12,  19,34,  46,35,  54,74,  57,139,  144,110,  175,217,  317,206\n",
            "Original anchors better than new anchors. Proceeding with original anchors.\n",
            "\n",
            "Image sizes 320 train, 320 test\n",
            "Using 2 dataloader workers\n",
            "Starting training for 5 epochs...\n",
            "\n",
            "     Epoch   gpu_mem      GIoU       obj       cls     total   targets  img_size\n",
            "       3/4     2.69G    0.1136   0.07635   0.03795    0.2279       438       320: 100% 4/4 [00:05<00:00,  1.28s/it]\n",
            "               Class      Images     Targets           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:08<00:00,  2.09s/it]\n",
            "                 all         128         929        0.13       0.644       0.463       0.247\n",
            "\n",
            "     Epoch   gpu_mem      GIoU       obj       cls     total   targets  img_size\n",
            "       4/4     2.65G    0.1098   0.07842   0.03901    0.2273       406       320: 100% 4/4 [00:02<00:00,  1.73it/s]\n",
            "               Class      Images     Targets           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:04<00:00,  1.01s/it]\n",
            "                 all         128         929       0.132       0.634       0.479       0.247\n",
            "Optimizer stripped from runs/Jul07_16-16-11_7d20d25984catutorial/weights/last_tutorial.pt\n",
            "Optimizer stripped from runs/Jul07_16-16-11_7d20d25984catutorial/weights/best_tutorial.pt\n",
            "2 epochs completed in 0.006 hours.\n",
            "\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "whhMiil2EkQS",
        "colab_type": "text"
      },
      "source": [
        "**Resume from Specific Run**"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "RXYjwze6ECPf",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "outputId": "7b0d4d72-96e7-4f79-c23c-a18211c30654"
      },
      "source": [
        "!python train.py --img 320 --batch 32 --epochs 5 --data ./data/coco128.yaml --cfg ./models/yolov5s.yaml --name tutorial --cache --resume ./runs/Jul07_16-15-02_7d20d25984catutorial/weights/last.pt"
      ],
      "execution_count": 20,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex\n",
            "Resuming training from ./runs/Jul07_16-15-02_7d20d25984catutorial/weights/last.pt\n",
            "Namespace(batch_size=32, bucket='', cache_images=True, cfg='./models/yolov5s.yaml', data='./data/coco128.yaml', device='', epochs=5, evolve=False, hyp='', img_size=[320], multi_scale=False, name='tutorial', noautoanchor=False, nosave=False, notest=False, rect=False, resume='./runs/Jul07_16-15-02_7d20d25984catutorial/weights/last.pt', single_cls=False, weights='./runs/Jul07_16-15-02_7d20d25984catutorial/weights/last.pt')\n",
            "Using CUDA device0 _CudaDeviceProperties(name='Tesla K80', total_memory=11441MB)\n",
            "\n",
            "2020-07-07 16:18:01.613770: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1\n",
            "Beginning training with {'optimizer': 'SGD', 'lr0': 0.01, 'momentum': 0.937, 'weight_decay': 0.0005, 'giou': 0.05, 'cls': 0.58, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2, 'anchor_t': 4.0, 'fl_gamma': 0.0, 'hsv_h': 0.014, 'hsv_s': 0.68, 'hsv_v': 0.36, 'degrees': 0.0, 'translate': 0.0, 'scale': 0.5, 'shear': 0.0}\n",
            "\n",
            "\n",
            "Start Tensorboard with \"tensorboard --logdir=runs\", view at http://localhost:6006/\n",
            "\n",
            "                 from  n    params  module                                  arguments                     \n",
            "  0                -1  1      3520  models.common.Focus                     [3, 32, 3]                    \n",
            "  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                \n",
            "  2                -1  1     19904  models.common.BottleneckCSP             [64, 64, 1]                   \n",
            "  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               \n",
            "  4                -1  1    161152  models.common.BottleneckCSP             [128, 128, 3]                 \n",
            "  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              \n",
            "  6                -1  1    641792  models.common.BottleneckCSP             [256, 256, 3]                 \n",
            "  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              \n",
            "  8                -1  1    656896  models.common.SPP                       [512, 512, [5, 9, 13]]        \n",
            "  9                -1  1   1248768  models.common.BottleneckCSP             [512, 512, 1, False]          \n",
            " 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
            " 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
            " 12           [-1, 6]  1         0  models.common.Concat                    [1]                           \n",
            " 13                -1  1    378624  models.common.BottleneckCSP             [512, 256, 1, False]          \n",
            " 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
            " 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
            " 16           [-1, 4]  1         0  models.common.Concat                    [1]                           \n",
            " 17                -1  1     95104  models.common.BottleneckCSP             [256, 128, 1, False]          \n",
            " 18                -1  1     32895  torch.nn.modules.conv.Conv2d            [128, 255, 1, 1]              \n",
            " 19                -2  1    147712  models.common.Conv                      [128, 128, 3, 2]              \n",
            " 20          [-1, 14]  1         0  models.common.Concat                    [1]                           \n",
            " 21                -1  1    313088  models.common.BottleneckCSP             [256, 256, 1, False]          \n",
            " 22                -1  1     65535  torch.nn.modules.conv.Conv2d            [256, 255, 1, 1]              \n",
            " 23                -2  1    590336  models.common.Conv                      [256, 256, 3, 2]              \n",
            " 24          [-1, 10]  1         0  models.common.Concat                    [1]                           \n",
            " 25                -1  1   1248768  models.common.BottleneckCSP             [512, 512, 1, False]          \n",
            " 26                -1  1    130815  torch.nn.modules.conv.Conv2d            [512, 255, 1, 1]              \n",
            " 27      [-1, 22, 18]  1         0  models.yolo.Detect                      [80, [[116, 90, 156, 198, 373, 326], [30, 61, 62, 45, 59, 119], [10, 13, 16, 30, 33, 23]]]\n",
            "Model Summary: 191 layers, 7.46816e+06 parameters, 7.46816e+06 gradients\n",
            "\n",
            "Optimizer groups: 62 .bias, 70 conv.weight, 59 other\n",
            "/usr/local/lib/python3.6/dist-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`.  Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate\n",
            "  \"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate\", UserWarning)\n",
            "Caching labels ../coco128/labels/train2017 (126 found, 0 missing, 2 empty, 0 duplicate, for 128 images): 100% 128/128 [00:00<00:00, 6058.81it/s]\n",
            "Caching images (0.0GB): 100% 128/128 [00:00<00:00, 137.69it/s]\n",
            "Caching labels ../coco128/labels/train2017 (126 found, 0 missing, 2 empty, 0 duplicate, for 128 images): 100% 128/128 [00:00<00:00, 6385.39it/s]\n",
            "Caching images (0.0GB): 100% 128/128 [00:01<00:00, 125.02it/s]\n",
            "\n",
            "Analyzing anchors... Best Possible Recall (BPR) = 0.9828. Attempting to generate improved anchors, please wait...\n",
            "WARNING: Extremely small objects found. 35 of 929 labels are < 3 pixels in width or height.\n",
            "Running kmeans for 9 anchors on 927 points...\n",
            "thr=0.25: 0.9720 best possible recall, 3.73 anchors past thr\n",
            "n=9, img_size=320, metric_all=0.260/0.653-mean/best, past_thr=0.471-mean: 9,12,  32,20,  27,49,  74,43,  54,92,  77,164,  160,109,  182,240,  302,188\n",
            "Evolving anchors with Genetic Algorithm: fitness = 0.6628: 100% 1000/1000 [00:00<00:00, 1213.98it/s]\n",
            "thr=0.25: 0.9860 best possible recall, 3.83 anchors past thr\n",
            "n=9, img_size=320, metric_all=0.265/0.664-mean/best, past_thr=0.471-mean: 8,10,  22,12,  19,34,  46,35,  54,74,  57,139,  144,110,  175,217,  317,206\n",
            "Original anchors better than new anchors. Proceeding with original anchors.\n",
            "\n",
            "Image sizes 320 train, 320 test\n",
            "Using 2 dataloader workers\n",
            "Starting training for 5 epochs...\n",
            "\n",
            "     Epoch   gpu_mem      GIoU       obj       cls     total   targets  img_size\n",
            "       3/4     2.69G    0.1136   0.07635   0.03795    0.2279       438       320: 100% 4/4 [00:05<00:00,  1.26s/it]\n",
            "               Class      Images     Targets           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:08<00:00,  2.13s/it]\n",
            "                 all         128         929        0.13       0.644       0.463       0.246\n",
            "\n",
            "     Epoch   gpu_mem      GIoU       obj       cls     total   targets  img_size\n",
            "       4/4     2.65G    0.1098   0.07842   0.03901    0.2273       406       320: 100% 4/4 [00:02<00:00,  1.80it/s]\n",
            "               Class      Images     Targets           P           R      [email protected]  [email protected]:.95: 100% 4/4 [00:04<00:00,  1.02s/it]\n",
            "                 all         128         929       0.132       0.634       0.478       0.247\n",
            "Optimizer stripped from runs/Jul07_16-18-01_7d20d25984catutorial/weights/last_tutorial.pt\n",
            "Optimizer stripped from runs/Jul07_16-18-01_7d20d25984catutorial/weights/best_tutorial.pt\n",
            "2 epochs completed in 0.006 hours.\n",
            "\n"
          ],
          "name": "stdout"
        }
      ]
    }
  ]
}