Add histogram equalization fcn (#2049)
Browse files- Dockerfile +2 -2
- models/yolo.py +1 -1
- utils/datasets.py +10 -4
Dockerfile
CHANGED
@@ -39,13 +39,13 @@ COPY . /usr/src/app
|
|
39 |
# sudo docker kill $(sudo docker ps -q)
|
40 |
|
41 |
# Kill all image-based
|
42 |
-
# sudo docker kill $(sudo docker ps -
|
43 |
|
44 |
# Bash into running container
|
45 |
# sudo docker exec -it 5a9b5863d93d bash
|
46 |
|
47 |
# Bash into stopped container
|
48 |
-
# id
|
49 |
|
50 |
# Send weights to GCP
|
51 |
# python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt
|
|
|
39 |
# sudo docker kill $(sudo docker ps -q)
|
40 |
|
41 |
# Kill all image-based
|
42 |
+
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
|
43 |
|
44 |
# Bash into running container
|
45 |
# sudo docker exec -it 5a9b5863d93d bash
|
46 |
|
47 |
# Bash into stopped container
|
48 |
+
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
|
49 |
|
50 |
# Send weights to GCP
|
51 |
# python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt
|
models/yolo.py
CHANGED
@@ -107,7 +107,7 @@ class Model(nn.Module):
|
|
107 |
for si, fi in zip(s, f):
|
108 |
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
109 |
yi = self.forward_once(xi)[0] # forward
|
110 |
-
# cv2.imwrite('
|
111 |
yi[..., :4] /= si # de-scale
|
112 |
if fi == 2:
|
113 |
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
|
|
|
107 |
for si, fi in zip(s, f):
|
108 |
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
109 |
yi = self.forward_once(xi)[0] # forward
|
110 |
+
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
111 |
yi[..., :4] /= si # de-scale
|
112 |
if fi == 2:
|
113 |
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
|
utils/datasets.py
CHANGED
@@ -631,10 +631,16 @@ def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
|
|
631 |
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
|
632 |
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
|
633 |
|
634 |
-
|
635 |
-
|
636 |
-
#
|
637 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
638 |
|
639 |
|
640 |
def load_mosaic(self, index):
|
|
|
631 |
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
|
632 |
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
|
633 |
|
634 |
+
|
635 |
+
def hist_equalize(img, clahe=True, bgr=False):
|
636 |
+
# Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
|
637 |
+
yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
|
638 |
+
if clahe:
|
639 |
+
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
640 |
+
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
|
641 |
+
else:
|
642 |
+
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
|
643 |
+
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
|
644 |
|
645 |
|
646 |
def load_mosaic(self, index):
|