Created using Colaboratory (#8255)
Browse files* Created using Colaboratory
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- tutorial.ipynb +144 -149
tutorial.ipynb
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
"accelerator": "GPU",
|
17 |
"widgets": {
|
18 |
"application/vnd.jupyter.widget-state+json": {
|
19 |
-
"
|
20 |
"model_module": "@jupyter-widgets/controls",
|
21 |
"model_name": "HBoxModel",
|
22 |
"model_module_version": "1.5.0",
|
@@ -31,14 +31,14 @@
|
|
31 |
"_view_name": "HBoxView",
|
32 |
"box_style": "",
|
33 |
"children": [
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"
|
37 |
],
|
38 |
-
"layout": "
|
39 |
}
|
40 |
},
|
41 |
-
"
|
42 |
"model_module": "@jupyter-widgets/controls",
|
43 |
"model_name": "HTMLModel",
|
44 |
"model_module_version": "1.5.0",
|
@@ -53,13 +53,13 @@
|
|
53 |
"_view_name": "HTMLView",
|
54 |
"description": "",
|
55 |
"description_tooltip": null,
|
56 |
-
"layout": "
|
57 |
"placeholder": "β",
|
58 |
-
"style": "
|
59 |
"value": "100%"
|
60 |
}
|
61 |
},
|
62 |
-
"
|
63 |
"model_module": "@jupyter-widgets/controls",
|
64 |
"model_name": "FloatProgressModel",
|
65 |
"model_module_version": "1.5.0",
|
@@ -75,15 +75,15 @@
|
|
75 |
"bar_style": "success",
|
76 |
"description": "",
|
77 |
"description_tooltip": null,
|
78 |
-
"layout": "
|
79 |
"max": 818322941,
|
80 |
"min": 0,
|
81 |
"orientation": "horizontal",
|
82 |
-
"style": "
|
83 |
"value": 818322941
|
84 |
}
|
85 |
},
|
86 |
-
"
|
87 |
"model_module": "@jupyter-widgets/controls",
|
88 |
"model_name": "HTMLModel",
|
89 |
"model_module_version": "1.5.0",
|
@@ -98,13 +98,13 @@
|
|
98 |
"_view_name": "HTMLView",
|
99 |
"description": "",
|
100 |
"description_tooltip": null,
|
101 |
-
"layout": "
|
102 |
"placeholder": "β",
|
103 |
-
"style": "
|
104 |
-
"value": " 780M/780M [01:
|
105 |
}
|
106 |
},
|
107 |
-
"
|
108 |
"model_module": "@jupyter-widgets/base",
|
109 |
"model_name": "LayoutModel",
|
110 |
"model_module_version": "1.2.0",
|
@@ -156,7 +156,7 @@
|
|
156 |
"width": null
|
157 |
}
|
158 |
},
|
159 |
-
"
|
160 |
"model_module": "@jupyter-widgets/base",
|
161 |
"model_name": "LayoutModel",
|
162 |
"model_module_version": "1.2.0",
|
@@ -208,7 +208,7 @@
|
|
208 |
"width": null
|
209 |
}
|
210 |
},
|
211 |
-
"
|
212 |
"model_module": "@jupyter-widgets/controls",
|
213 |
"model_name": "DescriptionStyleModel",
|
214 |
"model_module_version": "1.5.0",
|
@@ -223,7 +223,7 @@
|
|
223 |
"description_width": ""
|
224 |
}
|
225 |
},
|
226 |
-
"
|
227 |
"model_module": "@jupyter-widgets/base",
|
228 |
"model_name": "LayoutModel",
|
229 |
"model_module_version": "1.2.0",
|
@@ -275,7 +275,7 @@
|
|
275 |
"width": null
|
276 |
}
|
277 |
},
|
278 |
-
"
|
279 |
"model_module": "@jupyter-widgets/controls",
|
280 |
"model_name": "ProgressStyleModel",
|
281 |
"model_module_version": "1.5.0",
|
@@ -291,7 +291,7 @@
|
|
291 |
"description_width": ""
|
292 |
}
|
293 |
},
|
294 |
-
"
|
295 |
"model_module": "@jupyter-widgets/base",
|
296 |
"model_name": "LayoutModel",
|
297 |
"model_module_version": "1.2.0",
|
@@ -343,7 +343,7 @@
|
|
343 |
"width": null
|
344 |
}
|
345 |
},
|
346 |
-
"
|
347 |
"model_module": "@jupyter-widgets/controls",
|
348 |
"model_name": "DescriptionStyleModel",
|
349 |
"model_module_version": "1.5.0",
|
@@ -369,7 +369,7 @@
|
|
369 |
"colab_type": "text"
|
370 |
},
|
371 |
"source": [
|
372 |
-
"<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/
|
373 |
]
|
374 |
},
|
375 |
{
|
@@ -403,7 +403,7 @@
|
|
403 |
"colab": {
|
404 |
"base_uri": "https://localhost:8080/"
|
405 |
},
|
406 |
-
"outputId": "
|
407 |
},
|
408 |
"source": [
|
409 |
"!git clone https://github.com/ultralytics/yolov5 # clone\n",
|
@@ -420,14 +420,14 @@
|
|
420 |
"output_type": "stream",
|
421 |
"name": "stderr",
|
422 |
"text": [
|
423 |
-
"YOLOv5 π v6.1-
|
424 |
]
|
425 |
},
|
426 |
{
|
427 |
"output_type": "stream",
|
428 |
"name": "stdout",
|
429 |
"text": [
|
430 |
-
"Setup complete β
(8 CPUs, 51.0 GB RAM, 38.
|
431 |
]
|
432 |
}
|
433 |
]
|
@@ -460,7 +460,7 @@
|
|
460 |
"colab": {
|
461 |
"base_uri": "https://localhost:8080/"
|
462 |
},
|
463 |
-
"outputId": "
|
464 |
},
|
465 |
"source": [
|
466 |
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
|
@@ -473,16 +473,16 @@
|
|
473 |
"name": "stdout",
|
474 |
"text": [
|
475 |
"\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n",
|
476 |
-
"YOLOv5 π v6.1-
|
477 |
"\n",
|
478 |
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt to yolov5s.pt...\n",
|
479 |
-
"100% 14.1M/14.1M [00:00<00:00,
|
480 |
"\n",
|
481 |
"Fusing layers... \n",
|
482 |
"YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
|
483 |
-
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.
|
484 |
-
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.
|
485 |
-
"Speed: 0.
|
486 |
"Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
|
487 |
]
|
488 |
}
|
@@ -526,20 +526,20 @@
|
|
526 |
"base_uri": "https://localhost:8080/",
|
527 |
"height": 49,
|
528 |
"referenced_widgets": [
|
529 |
-
"
|
530 |
-
"
|
531 |
-
"
|
532 |
-
"
|
533 |
-
"
|
534 |
-
"
|
535 |
-
"
|
536 |
-
"
|
537 |
-
"
|
538 |
-
"
|
539 |
-
"
|
540 |
]
|
541 |
},
|
542 |
-
"outputId": "
|
543 |
},
|
544 |
"source": [
|
545 |
"# Download COCO val\n",
|
@@ -557,7 +557,7 @@
|
|
557 |
"application/vnd.jupyter.widget-view+json": {
|
558 |
"version_major": 2,
|
559 |
"version_minor": 0,
|
560 |
-
"model_id": "
|
561 |
}
|
562 |
},
|
563 |
"metadata": {}
|
@@ -571,7 +571,7 @@
|
|
571 |
"colab": {
|
572 |
"base_uri": "https://localhost:8080/"
|
573 |
},
|
574 |
-
"outputId": "
|
575 |
},
|
576 |
"source": [
|
577 |
"# Run YOLOv5x on COCO val\n",
|
@@ -584,35 +584,35 @@
|
|
584 |
"name": "stdout",
|
585 |
"text": [
|
586 |
"\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n",
|
587 |
-
"YOLOv5 π v6.1-
|
588 |
"\n",
|
589 |
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt to yolov5x.pt...\n",
|
590 |
-
"100% 166M/166M [00:
|
591 |
"\n",
|
592 |
"Fusing layers... \n",
|
593 |
"YOLOv5x summary: 444 layers, 86705005 parameters, 0 gradients\n",
|
594 |
"Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...\n",
|
595 |
-
"100% 755k/755k [00:00<00:00,
|
596 |
-
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<00:00,
|
597 |
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
|
598 |
-
" Class Images Labels P R [email protected] [email protected]:.95: 100% 157/157 [
|
599 |
-
" all 5000 36335 0.743 0.
|
600 |
-
"Speed: 0.1ms pre-process, 4.
|
601 |
"\n",
|
602 |
"Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n",
|
603 |
"loading annotations into memory...\n",
|
604 |
-
"Done (t=0.
|
605 |
"creating index...\n",
|
606 |
"index created!\n",
|
607 |
"Loading and preparing results...\n",
|
608 |
-
"DONE (t=
|
609 |
"creating index...\n",
|
610 |
"index created!\n",
|
611 |
"Running per image evaluation...\n",
|
612 |
"Evaluate annotation type *bbox*\n",
|
613 |
-
"DONE (t=
|
614 |
"Accumulating evaluation results...\n",
|
615 |
-
"DONE (t=
|
616 |
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.506\n",
|
617 |
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n",
|
618 |
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.549\n",
|
@@ -731,13 +731,13 @@
|
|
731 |
"colab": {
|
732 |
"base_uri": "https://localhost:8080/"
|
733 |
},
|
734 |
-
"outputId": "
|
735 |
},
|
736 |
"source": [
|
737 |
"# Train YOLOv5s on COCO128 for 3 epochs\n",
|
738 |
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
|
739 |
],
|
740 |
-
"execution_count":
|
741 |
"outputs": [
|
742 |
{
|
743 |
"output_type": "stream",
|
@@ -745,17 +745,12 @@
|
|
745 |
"text": [
|
746 |
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
|
747 |
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 β
\n",
|
748 |
-
"YOLOv5 π v6.1-
|
749 |
"\n",
|
750 |
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
|
751 |
"\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 π runs (RECOMMENDED)\n",
|
752 |
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
|
753 |
"\n",
|
754 |
-
"Dataset not found β , missing paths ['/content/datasets/coco128/images/train2017']\n",
|
755 |
-
"Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...\n",
|
756 |
-
"100% 6.66M/6.66M [00:00<00:00, 41.0MB/s]\n",
|
757 |
-
"Dataset download success β
(0.9s), saved to \u001b[1m/content/datasets\u001b[0m\n",
|
758 |
-
"\n",
|
759 |
" from n params module arguments \n",
|
760 |
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
|
761 |
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
|
@@ -782,17 +777,17 @@
|
|
782 |
" 22 [-1, 10] 1 0 models.common.Concat [1] \n",
|
783 |
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
|
784 |
" 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
|
785 |
-
"Model summary: 270 layers, 7235389 parameters, 7235389 gradients
|
786 |
"\n",
|
787 |
"Transferred 349/349 items from yolov5s.pt\n",
|
|
|
788 |
"Scaled weight_decay = 0.0005\n",
|
789 |
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 57 weight (no decay), 60 weight, 60 bias\n",
|
790 |
"\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n",
|
791 |
-
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/datasets/coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00
|
792 |
-
"\u001b[34m\u001b[1mtrain: \u001b[
|
793 |
-
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 977.19it/s]\n",
|
794 |
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
|
795 |
-
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00,
|
796 |
"Plotting labels to runs/train/exp/labels.jpg... \n",
|
797 |
"\n",
|
798 |
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset β
\n",
|
@@ -802,19 +797,19 @@
|
|
802 |
"Starting training for 3 epochs...\n",
|
803 |
"\n",
|
804 |
" Epoch gpu_mem box obj cls labels img_size\n",
|
805 |
-
" 0/2 3.72G 0.04609 0.
|
806 |
-
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:00<00:00,
|
807 |
-
" all 128 929 0.
|
808 |
"\n",
|
809 |
" Epoch gpu_mem box obj cls labels img_size\n",
|
810 |
-
" 1/2 4.57G 0.04466 0.06904 0.01721 210 640: 100% 8/8 [00:00<00:00, 8.
|
811 |
-
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:00<00:00,
|
812 |
-
" all 128 929
|
813 |
"\n",
|
814 |
" Epoch gpu_mem box obj cls labels img_size\n",
|
815 |
-
" 2/2 4.57G 0.04489 0.
|
816 |
-
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:00<00:00,
|
817 |
-
" all 128 929 0.
|
818 |
"\n",
|
819 |
"3 epochs completed in 0.003 hours.\n",
|
820 |
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n",
|
@@ -822,80 +817,80 @@
|
|
822 |
"\n",
|
823 |
"Validating runs/train/exp/weights/best.pt...\n",
|
824 |
"Fusing layers... \n",
|
825 |
-
"Model summary: 213 layers, 7225885 parameters, 0 gradients
|
826 |
-
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:03<00:00, 1.
|
827 |
-
" all 128 929 0.
|
828 |
-
" person 128 254 0.
|
829 |
-
" bicycle 128 6
|
830 |
-
" car 128 46 0.
|
831 |
-
" motorcycle 128 5 1 0.
|
832 |
-
" airplane 128 6 0.
|
833 |
-
" bus 128 7
|
834 |
-
" train 128 3
|
835 |
-
" truck 128 12 0.
|
836 |
-
" boat 128 6 1 0.
|
837 |
-
" traffic light 128 14 0.
|
838 |
-
" stop sign 128 2 0.
|
839 |
-
" bench 128 9 0.
|
840 |
-
" bird 128 16 0.
|
841 |
-
" cat 128 4 0.
|
842 |
-
" dog 128 9 1
|
843 |
-
" horse 128 2 0.
|
844 |
-
" elephant 128 17 0.
|
845 |
-
" bear 128 1 0.
|
846 |
-
" zebra 128 4
|
847 |
-
" giraffe 128 9 0.
|
848 |
-
" backpack 128 6 0.
|
849 |
-
" umbrella 128 18 0.
|
850 |
-
" handbag 128 19 0.
|
851 |
-
" tie 128 7 0.
|
852 |
-
" suitcase 128 4 0.
|
853 |
-
" frisbee 128 5 0.
|
854 |
-
" skis 128 1 0.
|
855 |
-
" snowboard 128 7 0.
|
856 |
-
" sports ball 128 6 0.
|
857 |
-
" kite 128 10 0.
|
858 |
-
" baseball bat 128 4 0.
|
859 |
-
" baseball glove 128 7
|
860 |
-
" skateboard 128 5 1
|
861 |
-
" tennis racket 128 7
|
862 |
-
" bottle 128 18 0.
|
863 |
-
" wine glass 128 16
|
864 |
-
" cup 128 36
|
865 |
-
" fork 128 6
|
866 |
-
" knife 128 16 0.
|
867 |
-
" spoon 128 22 0.
|
868 |
-
" bowl 128 28 0.
|
869 |
-
" banana 128 1 0.
|
870 |
" sandwich 128 2 1 0 0.606 0.545\n",
|
871 |
-
" orange 128 4 0.
|
872 |
-
" broccoli 128 11 0.
|
873 |
-
" carrot 128 24
|
874 |
-
" hot dog 128 2 0.
|
875 |
-
" pizza 128 5 0.
|
876 |
-
" donut 128 14 0.
|
877 |
-
" cake 128 4 0.
|
878 |
-
" chair 128 35 0.
|
879 |
-
" couch 128 6 1 0.
|
880 |
-
" potted plant 128 14
|
881 |
-
" bed 128 3 1 0 0.806 0.
|
882 |
-
" dining table 128 13 0.
|
883 |
-
" toilet 128 2 0.
|
884 |
-
" tv 128 2 0.
|
885 |
" laptop 128 3 1 0 0.83 0.532\n",
|
886 |
" mouse 128 2 1 0 0.0931 0.0466\n",
|
887 |
-
" remote 128 8 1
|
888 |
-
" cell phone 128 8 0.
|
889 |
-
" microwave 128 3 0.
|
890 |
-
" oven 128 5
|
891 |
-
" sink 128 6 0.
|
892 |
-
" refrigerator 128 5 0.
|
893 |
-
" book 128 29 0.
|
894 |
-
" clock 128 9 0.
|
895 |
-
" vase 128 2 0.
|
896 |
" scissors 128 1 1 0 0.995 0.199\n",
|
897 |
-
" teddy bear 128 21 0.
|
898 |
-
" toothbrush 128 5 0.
|
899 |
"Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
|
900 |
]
|
901 |
}
|
|
|
16 |
"accelerator": "GPU",
|
17 |
"widgets": {
|
18 |
"application/vnd.jupyter.widget-state+json": {
|
19 |
+
"572de771c7b34c1481def33bd5ed690d": {
|
20 |
"model_module": "@jupyter-widgets/controls",
|
21 |
"model_name": "HBoxModel",
|
22 |
"model_module_version": "1.5.0",
|
|
|
31 |
"_view_name": "HBoxView",
|
32 |
"box_style": "",
|
33 |
"children": [
|
34 |
+
"IPY_MODEL_20c89dc0d82a4bdf8756bf5e34152292",
|
35 |
+
"IPY_MODEL_61026f684725441db2a640e531807675",
|
36 |
+
"IPY_MODEL_8d2e16d90e13449598d7b3fac75f78a3"
|
37 |
],
|
38 |
+
"layout": "IPY_MODEL_a09d90f1bd374ece9a29bc6cfe07c072"
|
39 |
}
|
40 |
},
|
41 |
+
"20c89dc0d82a4bdf8756bf5e34152292": {
|
42 |
"model_module": "@jupyter-widgets/controls",
|
43 |
"model_name": "HTMLModel",
|
44 |
"model_module_version": "1.5.0",
|
|
|
53 |
"_view_name": "HTMLView",
|
54 |
"description": "",
|
55 |
"description_tooltip": null,
|
56 |
+
"layout": "IPY_MODEL_801e720897804703b4d32f99f84cc3b8",
|
57 |
"placeholder": "β",
|
58 |
+
"style": "IPY_MODEL_c9fb2e268cc94d508d909b3b72ac9df3",
|
59 |
"value": "100%"
|
60 |
}
|
61 |
},
|
62 |
+
"61026f684725441db2a640e531807675": {
|
63 |
"model_module": "@jupyter-widgets/controls",
|
64 |
"model_name": "FloatProgressModel",
|
65 |
"model_module_version": "1.5.0",
|
|
|
75 |
"bar_style": "success",
|
76 |
"description": "",
|
77 |
"description_tooltip": null,
|
78 |
+
"layout": "IPY_MODEL_bfbc16e88df24fae93e8c80538e78273",
|
79 |
"max": 818322941,
|
80 |
"min": 0,
|
81 |
"orientation": "horizontal",
|
82 |
+
"style": "IPY_MODEL_d9ffa50bddb7455ca4d67ec220c4a10c",
|
83 |
"value": 818322941
|
84 |
}
|
85 |
},
|
86 |
+
"8d2e16d90e13449598d7b3fac75f78a3": {
|
87 |
"model_module": "@jupyter-widgets/controls",
|
88 |
"model_name": "HTMLModel",
|
89 |
"model_module_version": "1.5.0",
|
|
|
98 |
"_view_name": "HTMLView",
|
99 |
"description": "",
|
100 |
"description_tooltip": null,
|
101 |
+
"layout": "IPY_MODEL_8be83ee30f804775aa55aeb021bf515b",
|
102 |
"placeholder": "β",
|
103 |
+
"style": "IPY_MODEL_78e5b8dba72942bfacfee54ceec53784",
|
104 |
+
"value": " 780M/780M [01:28<00:00, 9.08MB/s]"
|
105 |
}
|
106 |
},
|
107 |
+
"a09d90f1bd374ece9a29bc6cfe07c072": {
|
108 |
"model_module": "@jupyter-widgets/base",
|
109 |
"model_name": "LayoutModel",
|
110 |
"model_module_version": "1.2.0",
|
|
|
156 |
"width": null
|
157 |
}
|
158 |
},
|
159 |
+
"801e720897804703b4d32f99f84cc3b8": {
|
160 |
"model_module": "@jupyter-widgets/base",
|
161 |
"model_name": "LayoutModel",
|
162 |
"model_module_version": "1.2.0",
|
|
|
208 |
"width": null
|
209 |
}
|
210 |
},
|
211 |
+
"c9fb2e268cc94d508d909b3b72ac9df3": {
|
212 |
"model_module": "@jupyter-widgets/controls",
|
213 |
"model_name": "DescriptionStyleModel",
|
214 |
"model_module_version": "1.5.0",
|
|
|
223 |
"description_width": ""
|
224 |
}
|
225 |
},
|
226 |
+
"bfbc16e88df24fae93e8c80538e78273": {
|
227 |
"model_module": "@jupyter-widgets/base",
|
228 |
"model_name": "LayoutModel",
|
229 |
"model_module_version": "1.2.0",
|
|
|
275 |
"width": null
|
276 |
}
|
277 |
},
|
278 |
+
"d9ffa50bddb7455ca4d67ec220c4a10c": {
|
279 |
"model_module": "@jupyter-widgets/controls",
|
280 |
"model_name": "ProgressStyleModel",
|
281 |
"model_module_version": "1.5.0",
|
|
|
291 |
"description_width": ""
|
292 |
}
|
293 |
},
|
294 |
+
"8be83ee30f804775aa55aeb021bf515b": {
|
295 |
"model_module": "@jupyter-widgets/base",
|
296 |
"model_name": "LayoutModel",
|
297 |
"model_module_version": "1.2.0",
|
|
|
343 |
"width": null
|
344 |
}
|
345 |
},
|
346 |
+
"78e5b8dba72942bfacfee54ceec53784": {
|
347 |
"model_module": "@jupyter-widgets/controls",
|
348 |
"model_name": "DescriptionStyleModel",
|
349 |
"model_module_version": "1.5.0",
|
|
|
369 |
"colab_type": "text"
|
370 |
},
|
371 |
"source": [
|
372 |
+
"<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/update%2Fcolab/tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
373 |
]
|
374 |
},
|
375 |
{
|
|
|
403 |
"colab": {
|
404 |
"base_uri": "https://localhost:8080/"
|
405 |
},
|
406 |
+
"outputId": "4bf03330-c2e8-43ec-c5da-b7f5e0b2b123"
|
407 |
},
|
408 |
"source": [
|
409 |
"!git clone https://github.com/ultralytics/yolov5 # clone\n",
|
|
|
420 |
"output_type": "stream",
|
421 |
"name": "stderr",
|
422 |
"text": [
|
423 |
+
"YOLOv5 π v6.1-257-g669f707 Python-3.7.13 torch-1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n"
|
424 |
]
|
425 |
},
|
426 |
{
|
427 |
"output_type": "stream",
|
428 |
"name": "stdout",
|
429 |
"text": [
|
430 |
+
"Setup complete β
(8 CPUs, 51.0 GB RAM, 38.8/166.8 GB disk)\n"
|
431 |
]
|
432 |
}
|
433 |
]
|
|
|
460 |
"colab": {
|
461 |
"base_uri": "https://localhost:8080/"
|
462 |
},
|
463 |
+
"outputId": "1d1bb361-c8f3-4ddd-8a19-864bb993e7ac"
|
464 |
},
|
465 |
"source": [
|
466 |
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
|
|
|
473 |
"name": "stdout",
|
474 |
"text": [
|
475 |
"\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n",
|
476 |
+
"YOLOv5 π v6.1-257-g669f707 Python-3.7.13 torch-1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
|
477 |
"\n",
|
478 |
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt to yolov5s.pt...\n",
|
479 |
+
"100% 14.1M/14.1M [00:00<00:00, 225MB/s]\n",
|
480 |
"\n",
|
481 |
"Fusing layers... \n",
|
482 |
"YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
|
483 |
+
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.013s)\n",
|
484 |
+
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.015s)\n",
|
485 |
+
"Speed: 0.6ms pre-process, 14.1ms inference, 23.9ms NMS per image at shape (1, 3, 640, 640)\n",
|
486 |
"Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
|
487 |
]
|
488 |
}
|
|
|
526 |
"base_uri": "https://localhost:8080/",
|
527 |
"height": 49,
|
528 |
"referenced_widgets": [
|
529 |
+
"572de771c7b34c1481def33bd5ed690d",
|
530 |
+
"20c89dc0d82a4bdf8756bf5e34152292",
|
531 |
+
"61026f684725441db2a640e531807675",
|
532 |
+
"8d2e16d90e13449598d7b3fac75f78a3",
|
533 |
+
"a09d90f1bd374ece9a29bc6cfe07c072",
|
534 |
+
"801e720897804703b4d32f99f84cc3b8",
|
535 |
+
"c9fb2e268cc94d508d909b3b72ac9df3",
|
536 |
+
"bfbc16e88df24fae93e8c80538e78273",
|
537 |
+
"d9ffa50bddb7455ca4d67ec220c4a10c",
|
538 |
+
"8be83ee30f804775aa55aeb021bf515b",
|
539 |
+
"78e5b8dba72942bfacfee54ceec53784"
|
540 |
]
|
541 |
},
|
542 |
+
"outputId": "47c358af-138d-42d9-ca89-4364283df9e3"
|
543 |
},
|
544 |
"source": [
|
545 |
"# Download COCO val\n",
|
|
|
557 |
"application/vnd.jupyter.widget-view+json": {
|
558 |
"version_major": 2,
|
559 |
"version_minor": 0,
|
560 |
+
"model_id": "572de771c7b34c1481def33bd5ed690d"
|
561 |
}
|
562 |
},
|
563 |
"metadata": {}
|
|
|
571 |
"colab": {
|
572 |
"base_uri": "https://localhost:8080/"
|
573 |
},
|
574 |
+
"outputId": "979fe4c2-a058-44de-b401-3cb67878a1b9"
|
575 |
},
|
576 |
"source": [
|
577 |
"# Run YOLOv5x on COCO val\n",
|
|
|
584 |
"name": "stdout",
|
585 |
"text": [
|
586 |
"\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n",
|
587 |
+
"YOLOv5 π v6.1-257-g669f707 Python-3.7.13 torch-1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
|
588 |
"\n",
|
589 |
"Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt to yolov5x.pt...\n",
|
590 |
+
"100% 166M/166M [00:04<00:00, 39.4MB/s]\n",
|
591 |
"\n",
|
592 |
"Fusing layers... \n",
|
593 |
"YOLOv5x summary: 444 layers, 86705005 parameters, 0 gradients\n",
|
594 |
"Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...\n",
|
595 |
+
"100% 755k/755k [00:00<00:00, 47.9MB/s]\n",
|
596 |
+
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<00:00, 8742.34it/s]\n",
|
597 |
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
|
598 |
+
" Class Images Labels P R [email protected] [email protected]:.95: 100% 157/157 [01:11<00:00, 2.21it/s]\n",
|
599 |
+
" all 5000 36335 0.743 0.625 0.683 0.504\n",
|
600 |
+
"Speed: 0.1ms pre-process, 4.9ms inference, 1.2ms NMS per image at shape (32, 3, 640, 640)\n",
|
601 |
"\n",
|
602 |
"Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n",
|
603 |
"loading annotations into memory...\n",
|
604 |
+
"Done (t=0.42s)\n",
|
605 |
"creating index...\n",
|
606 |
"index created!\n",
|
607 |
"Loading and preparing results...\n",
|
608 |
+
"DONE (t=4.91s)\n",
|
609 |
"creating index...\n",
|
610 |
"index created!\n",
|
611 |
"Running per image evaluation...\n",
|
612 |
"Evaluate annotation type *bbox*\n",
|
613 |
+
"DONE (t=77.89s).\n",
|
614 |
"Accumulating evaluation results...\n",
|
615 |
+
"DONE (t=15.36s).\n",
|
616 |
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.506\n",
|
617 |
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n",
|
618 |
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.549\n",
|
|
|
731 |
"colab": {
|
732 |
"base_uri": "https://localhost:8080/"
|
733 |
},
|
734 |
+
"outputId": "be9424b5-34d6-4de0-e951-2c5ae334721e"
|
735 |
},
|
736 |
"source": [
|
737 |
"# Train YOLOv5s on COCO128 for 3 epochs\n",
|
738 |
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
|
739 |
],
|
740 |
+
"execution_count": 7,
|
741 |
"outputs": [
|
742 |
{
|
743 |
"output_type": "stream",
|
|
|
745 |
"text": [
|
746 |
"\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
|
747 |
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 β
\n",
|
748 |
+
"YOLOv5 π v6.1-257-g669f707 Python-3.7.13 torch-1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
|
749 |
"\n",
|
750 |
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
|
751 |
"\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 π runs (RECOMMENDED)\n",
|
752 |
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
|
753 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
754 |
" from n params module arguments \n",
|
755 |
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
|
756 |
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
|
|
|
777 |
" 22 [-1, 10] 1 0 models.common.Concat [1] \n",
|
778 |
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
|
779 |
" 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
|
780 |
+
"Model summary: 270 layers, 7235389 parameters, 7235389 gradients\n",
|
781 |
"\n",
|
782 |
"Transferred 349/349 items from yolov5s.pt\n",
|
783 |
+
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed β
\n",
|
784 |
"Scaled weight_decay = 0.0005\n",
|
785 |
"\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 57 weight (no decay), 60 weight, 60 bias\n",
|
786 |
"\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n",
|
787 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
|
788 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 978.19it/s]\n",
|
|
|
789 |
"\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
|
790 |
+
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 207.08it/s]\n",
|
791 |
"Plotting labels to runs/train/exp/labels.jpg... \n",
|
792 |
"\n",
|
793 |
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset β
\n",
|
|
|
797 |
"Starting training for 3 epochs...\n",
|
798 |
"\n",
|
799 |
" Epoch gpu_mem box obj cls labels img_size\n",
|
800 |
+
" 0/2 3.72G 0.04609 0.06258 0.01898 260 640: 100% 8/8 [00:03<00:00, 2.38it/s]\n",
|
801 |
+
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:00<00:00, 4.45it/s]\n",
|
802 |
+
" all 128 929 0.724 0.638 0.718 0.477\n",
|
803 |
"\n",
|
804 |
" Epoch gpu_mem box obj cls labels img_size\n",
|
805 |
+
" 1/2 4.57G 0.04466 0.06904 0.01721 210 640: 100% 8/8 [00:00<00:00, 8.21it/s]\n",
|
806 |
+
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:00<00:00, 4.62it/s]\n",
|
807 |
+
" all 128 929 0.732 0.658 0.746 0.488\n",
|
808 |
"\n",
|
809 |
" Epoch gpu_mem box obj cls labels img_size\n",
|
810 |
+
" 2/2 4.57G 0.04489 0.06445 0.01634 269 640: 100% 8/8 [00:00<00:00, 9.12it/s]\n",
|
811 |
+
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:00<00:00, 4.59it/s]\n",
|
812 |
+
" all 128 929 0.783 0.652 0.758 0.502\n",
|
813 |
"\n",
|
814 |
"3 epochs completed in 0.003 hours.\n",
|
815 |
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n",
|
|
|
817 |
"\n",
|
818 |
"Validating runs/train/exp/weights/best.pt...\n",
|
819 |
"Fusing layers... \n",
|
820 |
+
"Model summary: 213 layers, 7225885 parameters, 0 gradients\n",
|
821 |
+
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:03<00:00, 1.27it/s]\n",
|
822 |
+
" all 128 929 0.785 0.653 0.761 0.503\n",
|
823 |
+
" person 128 254 0.866 0.71 0.82 0.531\n",
|
824 |
+
" bicycle 128 6 0.764 0.546 0.62 0.375\n",
|
825 |
+
" car 128 46 0.615 0.556 0.565 0.211\n",
|
826 |
+
" motorcycle 128 5 1 0.952 0.995 0.761\n",
|
827 |
+
" airplane 128 6 0.937 1 0.995 0.751\n",
|
828 |
+
" bus 128 7 0.816 0.714 0.723 0.642\n",
|
829 |
+
" train 128 3 0.985 0.667 0.863 0.561\n",
|
830 |
+
" truck 128 12 0.553 0.417 0.481 0.258\n",
|
831 |
+
" boat 128 6 1 0.317 0.418 0.132\n",
|
832 |
+
" traffic light 128 14 0.668 0.287 0.372 0.227\n",
|
833 |
+
" stop sign 128 2 0.789 1 0.995 0.796\n",
|
834 |
+
" bench 128 9 0.691 0.444 0.614 0.265\n",
|
835 |
+
" bird 128 16 0.955 1 0.995 0.666\n",
|
836 |
+
" cat 128 4 0.811 1 0.995 0.797\n",
|
837 |
+
" dog 128 9 1 0.657 0.886 0.637\n",
|
838 |
+
" horse 128 2 0.806 1 0.995 0.647\n",
|
839 |
+
" elephant 128 17 0.955 0.882 0.932 0.691\n",
|
840 |
+
" bear 128 1 0.681 1 0.995 0.895\n",
|
841 |
+
" zebra 128 4 0.87 1 0.995 0.947\n",
|
842 |
+
" giraffe 128 9 0.881 1 0.995 0.734\n",
|
843 |
+
" backpack 128 6 0.926 0.667 0.808 0.359\n",
|
844 |
+
" umbrella 128 18 0.811 0.667 0.864 0.507\n",
|
845 |
+
" handbag 128 19 0.768 0.211 0.352 0.183\n",
|
846 |
+
" tie 128 7 0.778 0.714 0.822 0.495\n",
|
847 |
+
" suitcase 128 4 0.805 1 0.995 0.534\n",
|
848 |
+
" frisbee 128 5 0.697 0.8 0.8 0.74\n",
|
849 |
+
" skis 128 1 0.734 1 0.995 0.4\n",
|
850 |
+
" snowboard 128 7 0.859 0.714 0.852 0.563\n",
|
851 |
+
" sports ball 128 6 0.612 0.667 0.603 0.328\n",
|
852 |
+
" kite 128 10 0.855 0.592 0.624 0.249\n",
|
853 |
+
" baseball bat 128 4 0.403 0.25 0.401 0.171\n",
|
854 |
+
" baseball glove 128 7 0.7 0.429 0.467 0.323\n",
|
855 |
+
" skateboard 128 5 1 0.57 0.862 0.512\n",
|
856 |
+
" tennis racket 128 7 0.753 0.429 0.635 0.327\n",
|
857 |
+
" bottle 128 18 0.59 0.4 0.578 0.293\n",
|
858 |
+
" wine glass 128 16 0.654 1 0.925 0.503\n",
|
859 |
+
" cup 128 36 0.77 0.806 0.845 0.521\n",
|
860 |
+
" fork 128 6 0.988 0.333 0.44 0.312\n",
|
861 |
+
" knife 128 16 0.755 0.579 0.684 0.404\n",
|
862 |
+
" spoon 128 22 0.827 0.436 0.629 0.354\n",
|
863 |
+
" bowl 128 28 0.784 0.648 0.753 0.528\n",
|
864 |
+
" banana 128 1 0.802 1 0.995 0.108\n",
|
865 |
" sandwich 128 2 1 0 0.606 0.545\n",
|
866 |
+
" orange 128 4 0.921 1 0.995 0.691\n",
|
867 |
+
" broccoli 128 11 0.379 0.455 0.468 0.338\n",
|
868 |
+
" carrot 128 24 0.777 0.542 0.73 0.503\n",
|
869 |
+
" hot dog 128 2 0.562 1 0.828 0.712\n",
|
870 |
+
" pizza 128 5 0.802 0.814 0.962 0.694\n",
|
871 |
+
" donut 128 14 0.694 1 0.981 0.848\n",
|
872 |
+
" cake 128 4 0.864 1 0.995 0.858\n",
|
873 |
+
" chair 128 35 0.636 0.648 0.628 0.319\n",
|
874 |
+
" couch 128 6 1 0.606 0.857 0.555\n",
|
875 |
+
" potted plant 128 14 0.739 0.786 0.837 0.476\n",
|
876 |
+
" bed 128 3 1 0 0.806 0.568\n",
|
877 |
+
" dining table 128 13 0.862 0.483 0.602 0.405\n",
|
878 |
+
" toilet 128 2 0.941 1 0.995 0.846\n",
|
879 |
+
" tv 128 2 0.677 1 0.995 0.796\n",
|
880 |
" laptop 128 3 1 0 0.83 0.532\n",
|
881 |
" mouse 128 2 1 0 0.0931 0.0466\n",
|
882 |
+
" remote 128 8 1 0.612 0.659 0.534\n",
|
883 |
+
" cell phone 128 8 0.645 0.25 0.437 0.227\n",
|
884 |
+
" microwave 128 3 0.797 1 0.995 0.734\n",
|
885 |
+
" oven 128 5 0.435 0.4 0.44 0.29\n",
|
886 |
+
" sink 128 6 0.345 0.167 0.301 0.211\n",
|
887 |
+
" refrigerator 128 5 0.645 0.8 0.804 0.545\n",
|
888 |
+
" book 128 29 0.603 0.207 0.301 0.171\n",
|
889 |
+
" clock 128 9 0.785 0.889 0.888 0.734\n",
|
890 |
+
" vase 128 2 0.477 1 0.995 0.92\n",
|
891 |
" scissors 128 1 1 0 0.995 0.199\n",
|
892 |
+
" teddy bear 128 21 0.862 0.667 0.823 0.549\n",
|
893 |
+
" toothbrush 128 5 0.809 1 0.995 0.65\n",
|
894 |
"Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
|
895 |
]
|
896 |
}
|