Update train.py
Browse filesThis updates the PR to a one-liner to minimize additions. Perhaps we can include opt in the future but let's start with this for now.
train.py
CHANGED
@@ -58,14 +58,6 @@ def train(hyp):
|
|
58 |
with open(Path(log_dir) / 'opt.yaml', 'w') as f:
|
59 |
yaml.dump(vars(opt), f, sort_keys=False)
|
60 |
|
61 |
-
# Log hyperparameters in tensorboard
|
62 |
-
if tb_writer:
|
63 |
-
tb_hparams_dict = hyp
|
64 |
-
tb_hparams_dict.update(vars(opt))
|
65 |
-
tb_hparams_dict['img_size_train'], tb_hparams_dict['img_size_test'] = tb_hparams_dict['img_size']
|
66 |
-
del tb_hparams_dict['img_size']
|
67 |
-
tb_writer.add_hparams(tb_hparams_dict, {})
|
68 |
-
|
69 |
epochs = opt.epochs # 300
|
70 |
batch_size = opt.batch_size # 64
|
71 |
weights = opt.weights # initial training weights
|
@@ -194,6 +186,7 @@ def train(hyp):
|
|
194 |
# model._initialize_biases(cf.to(device))
|
195 |
plot_labels(labels, save_dir=log_dir)
|
196 |
if tb_writer:
|
|
|
197 |
tb_writer.add_histogram('classes', c, 0)
|
198 |
|
199 |
# Check anchors
|
|
|
58 |
with open(Path(log_dir) / 'opt.yaml', 'w') as f:
|
59 |
yaml.dump(vars(opt), f, sort_keys=False)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
epochs = opt.epochs # 300
|
62 |
batch_size = opt.batch_size # 64
|
63 |
weights = opt.weights # initial training weights
|
|
|
186 |
# model._initialize_biases(cf.to(device))
|
187 |
plot_labels(labels, save_dir=log_dir)
|
188 |
if tb_writer:
|
189 |
+
tb_writer.add_hparams(hyp, {})
|
190 |
tb_writer.add_histogram('classes', c, 0)
|
191 |
|
192 |
# Check anchors
|