W&B ID reset on training completion (#1852)
Browse files* Update train.py
Fix the bug of always the same W&B ID and continue overwrite with the old logging.
BUG report
https://github.com/ultralytics/yolov5/issues/1851
* Fix the bug of duplicate W&B ID
fix the bug of https://github.com/ultralytics/yolov5/issues/1851
If we had trained on yolov5s.pt, the program will generate a new unique W&B ID.
If we hadn't, the program will keep the old code, we can still use --resume aug.
* Update general.py
* revert train.py changes
Co-authored-by: Glenn Jocher <[email protected]>
- utils/general.py +2 -2
utils/general.py
CHANGED
@@ -361,8 +361,8 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non
|
|
361 |
def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *; strip_optimizer()
|
362 |
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
363 |
x = torch.load(f, map_location=torch.device('cpu'))
|
364 |
-
|
365 |
-
|
366 |
x['epoch'] = -1
|
367 |
x['model'].half() # to FP16
|
368 |
for p in x['model'].parameters():
|
|
|
361 |
def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *; strip_optimizer()
|
362 |
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
363 |
x = torch.load(f, map_location=torch.device('cpu'))
|
364 |
+
for key in 'optimizer', 'training_results', 'wandb_id':
|
365 |
+
x[key] = None
|
366 |
x['epoch'] = -1
|
367 |
x['model'].half() # to FP16
|
368 |
for p in x['model'].parameters():
|