Flask REST API Example (#2732)
Browse files* add files
* Update README.md
* Update README.md
* Update restapi.py
pretrained=True and model.eval() are used by default when loading a model now, so no need to call them manually.
* PEP8 reformat
* PEP8 reformat
Co-authored-by: Glenn Jocher <[email protected]>
utils/flask_rest_api/README.md
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Flask REST API
|
2 |
+
[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API created using Flask to expose the `yolov5s` model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
|
3 |
+
|
4 |
+
## Requirements
|
5 |
+
|
6 |
+
[Flask](https://palletsprojects.com/p/flask/) is required. Install with:
|
7 |
+
```shell
|
8 |
+
$ pip install Flask
|
9 |
+
```
|
10 |
+
|
11 |
+
## Run
|
12 |
+
|
13 |
+
After Flask installation run:
|
14 |
+
|
15 |
+
```shell
|
16 |
+
$ python3 restapi.py --port 5000
|
17 |
+
```
|
18 |
+
|
19 |
+
Then use [curl](https://curl.se/) to perform a request:
|
20 |
+
|
21 |
+
```shell
|
22 |
+
$ curl -X POST -F [email protected] 'http://localhost:5000/v1/object-detection/yolov5s'`
|
23 |
+
```
|
24 |
+
|
25 |
+
The model inference results are returned:
|
26 |
+
|
27 |
+
```shell
|
28 |
+
[{'class': 0,
|
29 |
+
'confidence': 0.8197850585,
|
30 |
+
'name': 'person',
|
31 |
+
'xmax': 1159.1403808594,
|
32 |
+
'xmin': 750.912902832,
|
33 |
+
'ymax': 711.2583007812,
|
34 |
+
'ymin': 44.0350036621},
|
35 |
+
{'class': 0,
|
36 |
+
'confidence': 0.5667674541,
|
37 |
+
'name': 'person',
|
38 |
+
'xmax': 1065.5523681641,
|
39 |
+
'xmin': 116.0448303223,
|
40 |
+
'ymax': 713.8904418945,
|
41 |
+
'ymin': 198.4603881836},
|
42 |
+
{'class': 27,
|
43 |
+
'confidence': 0.5661227107,
|
44 |
+
'name': 'tie',
|
45 |
+
'xmax': 516.7975463867,
|
46 |
+
'xmin': 416.6880187988,
|
47 |
+
'ymax': 717.0524902344,
|
48 |
+
'ymin': 429.2020568848}]
|
49 |
+
```
|
50 |
+
|
51 |
+
An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given in `example_request.py`
|
utils/flask_rest_api/example_request.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Perform test request"""
|
2 |
+
import pprint
|
3 |
+
|
4 |
+
import requests
|
5 |
+
|
6 |
+
DETECTION_URL = "http://localhost:5000/v1/object-detection/yolov5s"
|
7 |
+
TEST_IMAGE = "zidane.jpg"
|
8 |
+
|
9 |
+
image_data = open(TEST_IMAGE, "rb").read()
|
10 |
+
|
11 |
+
response = requests.post(DETECTION_URL, files={"image": image_data}).json()
|
12 |
+
|
13 |
+
pprint.pprint(response)
|
utils/flask_rest_api/restapi.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Run a rest API exposing the yolov5s object detection model
|
3 |
+
"""
|
4 |
+
import argparse
|
5 |
+
import io
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
from flask import Flask, request
|
10 |
+
|
11 |
+
app = Flask(__name__)
|
12 |
+
|
13 |
+
DETECTION_URL = "/v1/object-detection/yolov5s"
|
14 |
+
|
15 |
+
|
16 |
+
@app.route(DETECTION_URL, methods=["POST"])
|
17 |
+
def predict():
|
18 |
+
if not request.method == "POST":
|
19 |
+
return
|
20 |
+
|
21 |
+
if request.files.get("image"):
|
22 |
+
image_file = request.files["image"]
|
23 |
+
image_bytes = image_file.read()
|
24 |
+
|
25 |
+
img = Image.open(io.BytesIO(image_bytes))
|
26 |
+
|
27 |
+
results = model(img, size=640)
|
28 |
+
data = results.pandas().xyxy[0].to_json(orient="records")
|
29 |
+
return data
|
30 |
+
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
parser = argparse.ArgumentParser(description="Flask api exposing yolov5 model")
|
34 |
+
parser.add_argument("--port", default=5000, type=int, help="port number")
|
35 |
+
args = parser.parse_args()
|
36 |
+
|
37 |
+
model = torch.hub.load("ultralytics/yolov5", "yolov5s", force_reload=True).autoshape() # force_reload to recache
|
38 |
+
app.run(host="0.0.0.0", port=args.port) # debug=True causes Restarting with stat
|