PyTorch version to screen and cleanup (#1325)
Browse files* Create flatten_recursive() helper function
* cleanup
* print torch version
- models/yolo.py +3 -4
- test.py +2 -1
- utils/datasets.py +8 -0
- utils/torch_utils.py +5 -6
models/yolo.py
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
import argparse
|
2 |
import logging
|
|
|
3 |
import sys
|
4 |
from copy import deepcopy
|
5 |
from pathlib import Path
|
6 |
|
7 |
-
import math
|
8 |
-
|
9 |
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
@@ -74,7 +73,7 @@ class Model(nn.Module):
|
|
74 |
|
75 |
# Define model
|
76 |
if nc and nc != self.yaml['nc']:
|
77 |
-
|
78 |
self.yaml['nc'] = nc # override yaml value
|
79 |
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist, ch_out
|
80 |
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
|
@@ -93,7 +92,7 @@ class Model(nn.Module):
|
|
93 |
# Init weights, biases
|
94 |
initialize_weights(self)
|
95 |
self.info()
|
96 |
-
|
97 |
|
98 |
def forward(self, x, augment=False, profile=False):
|
99 |
if augment:
|
|
|
1 |
import argparse
|
2 |
import logging
|
3 |
+
import math
|
4 |
import sys
|
5 |
from copy import deepcopy
|
6 |
from pathlib import Path
|
7 |
|
|
|
|
|
8 |
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
9 |
logger = logging.getLogger(__name__)
|
10 |
|
|
|
73 |
|
74 |
# Define model
|
75 |
if nc and nc != self.yaml['nc']:
|
76 |
+
logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
|
77 |
self.yaml['nc'] = nc # override yaml value
|
78 |
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist, ch_out
|
79 |
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
|
|
|
92 |
# Init weights, biases
|
93 |
initialize_weights(self)
|
94 |
self.info()
|
95 |
+
logger.info('')
|
96 |
|
97 |
def forward(self, x, augment=False, profile=False):
|
98 |
if augment:
|
test.py
CHANGED
@@ -262,7 +262,8 @@ def test(data,
|
|
262 |
print('ERROR: pycocotools unable to run: %s' % e)
|
263 |
|
264 |
# Return results
|
265 |
-
|
|
|
266 |
model.float() # for training
|
267 |
maps = np.zeros(nc) + map
|
268 |
for i, c in enumerate(ap_class):
|
|
|
262 |
print('ERROR: pycocotools unable to run: %s' % e)
|
263 |
|
264 |
# Return results
|
265 |
+
if not training:
|
266 |
+
print('Results saved to %s' % save_dir)
|
267 |
model.float() # for training
|
268 |
maps = np.zeros(nc) + map
|
269 |
for i, c in enumerate(ap_class):
|
utils/datasets.py
CHANGED
@@ -946,3 +946,11 @@ def create_folder(path='./new'):
|
|
946 |
if os.path.exists(path):
|
947 |
shutil.rmtree(path) # delete output folder
|
948 |
os.makedirs(path) # make new output folder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
946 |
if os.path.exists(path):
|
947 |
shutil.rmtree(path) # delete output folder
|
948 |
os.makedirs(path) # make new output folder
|
949 |
+
|
950 |
+
|
951 |
+
def flatten_recursive(path='../coco128'):
|
952 |
+
# Flatten a recursive directory by bringing all files to top level
|
953 |
+
new_path = Path(path + '_flat')
|
954 |
+
create_folder(new_path)
|
955 |
+
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
|
956 |
+
shutil.copyfile(file, new_path / Path(file).name)
|
utils/torch_utils.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import logging
|
|
|
2 |
import os
|
3 |
import time
|
4 |
from copy import deepcopy
|
5 |
|
6 |
-
import math
|
7 |
import torch
|
8 |
import torch.backends.cudnn as cudnn
|
9 |
import torch.nn as nn
|
@@ -39,14 +39,13 @@ def select_device(device='', batch_size=None):
|
|
39 |
if ng > 1 and batch_size: # check that batch_size is compatible with device_count
|
40 |
assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
|
41 |
x = [torch.cuda.get_device_properties(i) for i in range(ng)]
|
42 |
-
s = 'Using
|
43 |
for i in range(0, ng):
|
44 |
if i == 1:
|
45 |
s = ' ' * len(s)
|
46 |
-
logger.info("%
|
47 |
-
(s, i, x[i].name, x[i].total_memory / c))
|
48 |
else:
|
49 |
-
logger.info('Using CPU')
|
50 |
|
51 |
logger.info('') # skip a line
|
52 |
return torch.device('cuda:0' if cuda else 'cpu')
|
@@ -143,7 +142,7 @@ def model_info(model, verbose=False):
|
|
143 |
from thop import profile
|
144 |
flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, 64, 64),), verbose=False)[0] / 1E9 * 2
|
145 |
fs = ', %.1f GFLOPS' % (flops * 100) # 640x640 FLOPS
|
146 |
-
except:
|
147 |
fs = ''
|
148 |
|
149 |
logger.info(
|
|
|
1 |
import logging
|
2 |
+
import math
|
3 |
import os
|
4 |
import time
|
5 |
from copy import deepcopy
|
6 |
|
|
|
7 |
import torch
|
8 |
import torch.backends.cudnn as cudnn
|
9 |
import torch.nn as nn
|
|
|
39 |
if ng > 1 and batch_size: # check that batch_size is compatible with device_count
|
40 |
assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
|
41 |
x = [torch.cuda.get_device_properties(i) for i in range(ng)]
|
42 |
+
s = f'Using torch {torch.__version__} '
|
43 |
for i in range(0, ng):
|
44 |
if i == 1:
|
45 |
s = ' ' * len(s)
|
46 |
+
logger.info("%sCUDA:%g (%s, %dMB)" % (s, i, x[i].name, x[i].total_memory / c))
|
|
|
47 |
else:
|
48 |
+
logger.info(f'Using torch {torch.__version__} CPU')
|
49 |
|
50 |
logger.info('') # skip a line
|
51 |
return torch.device('cuda:0' if cuda else 'cpu')
|
|
|
142 |
from thop import profile
|
143 |
flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, 64, 64),), verbose=False)[0] / 1E9 * 2
|
144 |
fs = ', %.1f GFLOPS' % (flops * 100) # 640x640 FLOPS
|
145 |
+
except ImportError:
|
146 |
fs = ''
|
147 |
|
148 |
logger.info(
|