Add InfiniteDataLoader class (#876)
Browse files* Add InfiniteDataLoader
Only initializes at first epoch. Saves time.
* Moved class to a better location
- utils/datasets.py +42 -6
utils/datasets.py
CHANGED
@@ -63,15 +63,51 @@ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=Fa
|
|
63 |
batch_size = min(batch_size, len(dataset))
|
64 |
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
|
65 |
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
|
66 |
-
dataloader =
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
return dataloader, dataset
|
73 |
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
class LoadImages: # for inference
|
76 |
def __init__(self, path, img_size=640):
|
77 |
p = str(Path(path)) # os-agnostic
|
|
|
63 |
batch_size = min(batch_size, len(dataset))
|
64 |
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
|
65 |
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
|
66 |
+
dataloader = InfiniteDataLoader (dataset,
|
67 |
+
batch_size=batch_size,
|
68 |
+
num_workers=nw,
|
69 |
+
sampler=train_sampler,
|
70 |
+
pin_memory=True,
|
71 |
+
collate_fn=LoadImagesAndLabels.collate_fn)
|
72 |
return dataloader, dataset
|
73 |
|
74 |
|
75 |
+
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
|
76 |
+
'''
|
77 |
+
Dataloader that reuses workers.
|
78 |
+
|
79 |
+
Uses same syntax as vanilla DataLoader.
|
80 |
+
'''
|
81 |
+
|
82 |
+
def __init__(self, *args, **kwargs):
|
83 |
+
super().__init__(*args, **kwargs)
|
84 |
+
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
85 |
+
self.iterator = super().__iter__()
|
86 |
+
|
87 |
+
def __len__(self):
|
88 |
+
return len(self.batch_sampler.sampler)
|
89 |
+
|
90 |
+
def __iter__(self):
|
91 |
+
for i in range(len(self)):
|
92 |
+
yield next(self.iterator)
|
93 |
+
|
94 |
+
|
95 |
+
class _RepeatSampler(object):
|
96 |
+
'''
|
97 |
+
Sampler that repeats forever.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
sampler (Sampler)
|
101 |
+
'''
|
102 |
+
|
103 |
+
def __init__(self, sampler):
|
104 |
+
self.sampler = sampler
|
105 |
+
|
106 |
+
def __iter__(self):
|
107 |
+
while True:
|
108 |
+
yield from iter(self.sampler)
|
109 |
+
|
110 |
+
|
111 |
class LoadImages: # for inference
|
112 |
def __init__(self, path, img_size=640):
|
113 |
p = str(Path(path)) # os-agnostic
|