Add callbacks (#7315)
Browse files* Add `on_train_start()` callback
* Update
* Update
- train.py +4 -0
- utils/loggers/__init__.py +4 -0
- val.py +4 -0
train.py
CHANGED
@@ -66,6 +66,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
|
66 |
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
|
67 |
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
|
68 |
opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
|
|
|
69 |
|
70 |
# Directories
|
71 |
w = save_dir / 'weights' # weights dir
|
@@ -291,11 +292,13 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
|
291 |
scaler = amp.GradScaler(enabled=cuda)
|
292 |
stopper = EarlyStopping(patience=opt.patience)
|
293 |
compute_loss = ComputeLoss(model) # init loss class
|
|
|
294 |
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
|
295 |
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
|
296 |
f"Logging results to {colorstr('bold', save_dir)}\n"
|
297 |
f'Starting training for {epochs} epochs...')
|
298 |
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
|
|
299 |
model.train()
|
300 |
|
301 |
# Update image weights (optional, single-GPU only)
|
@@ -317,6 +320,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
|
317 |
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
318 |
optimizer.zero_grad()
|
319 |
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
|
|
320 |
ni = i + nb * epoch # number integrated batches (since train start)
|
321 |
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
|
322 |
|
|
|
66 |
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
|
67 |
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
|
68 |
opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
|
69 |
+
callbacks.run('on_pretrain_routine_start')
|
70 |
|
71 |
# Directories
|
72 |
w = save_dir / 'weights' # weights dir
|
|
|
292 |
scaler = amp.GradScaler(enabled=cuda)
|
293 |
stopper = EarlyStopping(patience=opt.patience)
|
294 |
compute_loss = ComputeLoss(model) # init loss class
|
295 |
+
callbacks.run('on_train_start')
|
296 |
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
|
297 |
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
|
298 |
f"Logging results to {colorstr('bold', save_dir)}\n"
|
299 |
f'Starting training for {epochs} epochs...')
|
300 |
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
301 |
+
callbacks.run('on_train_epoch_start')
|
302 |
model.train()
|
303 |
|
304 |
# Update image weights (optional, single-GPU only)
|
|
|
320 |
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
321 |
optimizer.zero_grad()
|
322 |
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
323 |
+
callbacks.run('on_train_batch_start')
|
324 |
ni = i + nb * epoch # number integrated batches (since train start)
|
325 |
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
|
326 |
|
utils/loggers/__init__.py
CHANGED
@@ -84,6 +84,10 @@ class Loggers():
|
|
84 |
else:
|
85 |
self.wandb = None
|
86 |
|
|
|
|
|
|
|
|
|
87 |
def on_pretrain_routine_end(self):
|
88 |
# Callback runs on pre-train routine end
|
89 |
paths = self.save_dir.glob('*labels*.jpg') # training labels
|
|
|
84 |
else:
|
85 |
self.wandb = None
|
86 |
|
87 |
+
def on_train_start(self):
|
88 |
+
# Callback runs on train start
|
89 |
+
pass
|
90 |
+
|
91 |
def on_pretrain_routine_end(self):
|
92 |
# Callback runs on pre-train routine end
|
93 |
paths = self.save_dir.glob('*labels*.jpg') # training labels
|
val.py
CHANGED
@@ -188,8 +188,10 @@ def run(
|
|
188 |
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
189 |
loss = torch.zeros(3, device=device)
|
190 |
jdict, stats, ap, ap_class = [], [], [], []
|
|
|
191 |
pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
192 |
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
|
|
|
193 |
t1 = time_sync()
|
194 |
if cuda:
|
195 |
im = im.to(device, non_blocking=True)
|
@@ -260,6 +262,8 @@ def run(
|
|
260 |
f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
|
261 |
Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start()
|
262 |
|
|
|
|
|
263 |
# Compute metrics
|
264 |
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
|
265 |
if len(stats) and stats[0].any():
|
|
|
188 |
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
189 |
loss = torch.zeros(3, device=device)
|
190 |
jdict, stats, ap, ap_class = [], [], [], []
|
191 |
+
callbacks.run('on_val_start')
|
192 |
pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
193 |
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
|
194 |
+
callbacks.run('on_val_batch_start')
|
195 |
t1 = time_sync()
|
196 |
if cuda:
|
197 |
im = im.to(device, non_blocking=True)
|
|
|
262 |
f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
|
263 |
Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start()
|
264 |
|
265 |
+
callbacks.run('on_val_batch_end')
|
266 |
+
|
267 |
# Compute metrics
|
268 |
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
|
269 |
if len(stats) and stats[0].any():
|