ACON activation function (#2893)
Browse files* ACON Activation Function
## 🚀 Feature
There is a new activation function [ACON (CVPR 2021)](https://arxiv.org/pdf/2009.04759.pdf) that unifies ReLU and Swish.
ACON is simple but very effective, code is here: https://github.com/nmaac/acon/blob/main/acon.py#L19

The improvements are very significant:

## Alternatives
It also has an enhanced version meta-ACON that uses a small network to learn beta explicitly, which may influence the speed a bit.
## Additional context
[Code](https://github.com/nmaac/acon) and [paper](https://arxiv.org/pdf/2009.04759.pdf).
* Update activations.py
- utils/activations.py +41 -17
@@ -19,23 +19,6 @@ class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
|
|
19 |
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
|
20 |
|
21 |
|
22 |
-
class MemoryEfficientSwish(nn.Module):
|
23 |
-
class F(torch.autograd.Function):
|
24 |
-
@staticmethod
|
25 |
-
def forward(ctx, x):
|
26 |
-
ctx.save_for_backward(x)
|
27 |
-
return x * torch.sigmoid(x)
|
28 |
-
|
29 |
-
@staticmethod
|
30 |
-
def backward(ctx, grad_output):
|
31 |
-
x = ctx.saved_tensors[0]
|
32 |
-
sx = torch.sigmoid(x)
|
33 |
-
return grad_output * (sx * (1 + x * (1 - sx)))
|
34 |
-
|
35 |
-
def forward(self, x):
|
36 |
-
return self.F.apply(x)
|
37 |
-
|
38 |
-
|
39 |
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
|
40 |
class Mish(nn.Module):
|
41 |
@staticmethod
|
@@ -70,3 +53,44 @@ class FReLU(nn.Module):
|
|
70 |
|
71 |
def forward(self, x):
|
72 |
return torch.max(x, self.bn(self.conv(x)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
|
23 |
class Mish(nn.Module):
|
24 |
@staticmethod
|
|
|
53 |
|
54 |
def forward(self, x):
|
55 |
return torch.max(x, self.bn(self.conv(x)))
|
56 |
+
|
57 |
+
|
58 |
+
# ACON https://arxiv.org/pdf/2009.04759.pdf ----------------------------------------------------------------------------
|
59 |
+
class AconC(nn.Module):
|
60 |
+
r""" ACON activation (activate or not).
|
61 |
+
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
|
62 |
+
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
63 |
+
"""
|
64 |
+
|
65 |
+
def __init__(self, c1):
|
66 |
+
super().__init__()
|
67 |
+
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
68 |
+
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
69 |
+
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
dpx = (self.p1 - self.p2) * x
|
73 |
+
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
|
74 |
+
|
75 |
+
|
76 |
+
class MetaAconC(nn.Module):
|
77 |
+
r""" ACON activation (activate or not).
|
78 |
+
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
|
79 |
+
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
|
83 |
+
super().__init__()
|
84 |
+
c2 = max(r, c1 // r)
|
85 |
+
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
86 |
+
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
87 |
+
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=False)
|
88 |
+
self.bn1 = nn.BatchNorm2d(c2)
|
89 |
+
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=False)
|
90 |
+
self.bn2 = nn.BatchNorm2d(c1)
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
|
94 |
+
beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y)))))
|
95 |
+
dpx = (self.p1 - self.p2) * x
|
96 |
+
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
|