Simplify README.md (#3530)
Browse files* Update README.md
* added hosted images
* added new logo
* testing image hosting
* changed svgs to pngs
* removed old header
* Update README.md
* correct colab image source
* splash.jpg
* rocket and W&B fix
* added contributing template
* added social media to top section
* increased size of top social media
* cleanup and updates
* rearrange quickstarts
* API cleanup
* PyTorch Hub cleanup
* Add tutorials
* cleanup
* update CONTRIBUTING.md
* Update README.md
* update wandb link
* Update README.md
* remove tutorials header
* update environments and integrations
* Comment API image
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* double spaces after section
* Update README.md
* Update README.md
Co-authored-by: Glenn Jocher <[email protected]>
- CONTRIBUTING.md +49 -0
- README.md +219 -118
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Contributing to YOLOv5 π
|
2 |
+
|
3 |
+
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
|
4 |
+
|
5 |
+
- Reporting a bug
|
6 |
+
- Discussing the current state of the code
|
7 |
+
- Submitting a fix
|
8 |
+
- Proposing a new feature
|
9 |
+
- Becoming a maintainer
|
10 |
+
|
11 |
+
YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be helping push the frontiers of what's possible in AI π!
|
12 |
+
|
13 |
+
|
14 |
+
## Submitting a Pull Request (PR) π οΈ
|
15 |
+
|
16 |
+
To allow your work to be integrated as seamlessly as possible, we advise you to:
|
17 |
+
- β
Verify your PR is **up-to-date with origin/master.** If your PR is behind origin/master an automatic [GitHub actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) rebase may be attempted by including the /rebase command in a comment body, or by running the following code, replacing 'feature' with the name of your local branch:
|
18 |
+
```bash
|
19 |
+
git remote add upstream https://github.com/ultralytics/yolov5.git
|
20 |
+
git fetch upstream
|
21 |
+
git checkout feature # <----- replace 'feature' with local branch name
|
22 |
+
git merge upstream/master
|
23 |
+
git push -u origin -f
|
24 |
+
```
|
25 |
+
- β
Verify all Continuous Integration (CI) **checks are passing**.
|
26 |
+
- β
Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ -Bruce Lee
|
27 |
+
|
28 |
+
|
29 |
+
## Submitting a Bug Report π
|
30 |
+
|
31 |
+
For us to investigate an issue we would need to be able to reproduce it ourselves first. We've created a few short guidelines below to help users provide what we need in order to get started investigating a possible problem.
|
32 |
+
|
33 |
+
When asking a question, people will be better able to provide help if you provide **code** that they can easily understand and use to **reproduce** the problem. This is referred to by community members as creating a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces the problem should be:
|
34 |
+
|
35 |
+
* β
**Minimal** β Use as little code as possible that still produces the same problem
|
36 |
+
* β
**Complete** β Provide **all** parts someone else needs to reproduce your problem in the question itself
|
37 |
+
* β
**Reproducible** β Test the code you're about to provide to make sure it reproduces the problem
|
38 |
+
|
39 |
+
In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code should be:
|
40 |
+
|
41 |
+
* β
**Current** β Verify that your code is up-to-date with current GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new copy to ensure your problem has not already been resolved by previous commits.
|
42 |
+
* β
**Unmodified** β Your problem must be reproducible without any modifications to the codebase in this repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code β οΈ.
|
43 |
+
|
44 |
+
If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the π **Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better understand and diagnose your problem.
|
45 |
+
|
46 |
+
|
47 |
+
## License
|
48 |
+
|
49 |
+
By contributing, you agree that your contributions will be licensed under the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)
|
@@ -1,70 +1,136 @@
|
|
|
|
|
|
1 |
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
|
2 |
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
|
3 |
-
|
4 |
-
|
|
|
5 |
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
|
|
8 |
|
9 |
-
|
10 |
-
<details>
|
11 |
-
<summary>YOLOv5-P5 640 Figure (click to expand)</summary>
|
12 |
-
|
13 |
-
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313219-f1d70e00-9af5-11eb-9973-52b1f98d321a.png"></p>
|
14 |
-
</details>
|
15 |
-
<details>
|
16 |
-
<summary>Figure Notes (click to expand)</summary>
|
17 |
-
|
18 |
-
* GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
|
19 |
-
* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
|
20 |
-
* **Reproduce** by `python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
21 |
-
</details>
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
- **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
|
26 |
-
- **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
|
27 |
|
|
|
|
|
28 |
|
29 |
-
|
|
|
30 |
|
31 |
-
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|[YOLOv5m][assets] |640 |44.5 |44.5 |63.1 |2.7 | |21.4 |51.3
|
37 |
-
|[YOLOv5l][assets] |640 |48.2 |48.2 |66.9 |3.8 | |47.0 |115.4
|
38 |
-
|[YOLOv5x][assets] |640 |**50.4** |**50.4** |**68.8** |6.1 | |87.7 |218.8
|
39 |
-
| | | | | | || |
|
40 |
-
|[YOLOv5s6][assets] |1280 |43.3 |43.3 |61.9 |**4.3** | |12.7 |17.4
|
41 |
-
|[YOLOv5m6][assets] |1280 |50.5 |50.5 |68.7 |8.4 | |35.9 |52.4
|
42 |
-
|[YOLOv5l6][assets] |1280 |53.4 |53.4 |71.1 |12.3 | |77.2 |117.7
|
43 |
-
|[YOLOv5x6][assets] |1280 |**54.4** |**54.4** |**72.0** |22.4 | |141.8 |222.9
|
44 |
-
| | | | | | || |
|
45 |
-
|[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8 | |- |-
|
46 |
|
47 |
-
<details>
|
48 |
-
<summary>Table Notes (click to expand)</summary>
|
49 |
-
|
50 |
-
* AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
|
51 |
-
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
|
52 |
-
* Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
|
53 |
-
* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
|
54 |
-
* Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python test.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
55 |
</details>
|
56 |
|
57 |
|
58 |
-
## Requirements
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
```bash
|
63 |
-
$
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
```
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
|
|
68 |
|
69 |
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) π RECOMMENDED
|
70 |
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) βοΈ RECOMMENDED
|
@@ -80,91 +146,126 @@ $ pip install -r requirements.txt
|
|
80 |
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) β NEW
|
81 |
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
|
82 |
|
|
|
83 |
|
84 |
-
## Environments
|
85 |
-
|
86 |
-
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
87 |
-
|
88 |
-
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
89 |
-
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
|
90 |
-
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
|
91 |
-
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
92 |
-
|
93 |
-
|
94 |
-
## Inference
|
95 |
-
|
96 |
-
`detect.py` runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
|
97 |
-
```bash
|
98 |
-
$ python detect.py --source 0 # webcam
|
99 |
-
file.jpg # image
|
100 |
-
file.mp4 # video
|
101 |
-
path/ # directory
|
102 |
-
path/*.jpg # glob
|
103 |
-
'https://youtu.be/NUsoVlDFqZg' # YouTube video
|
104 |
-
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
105 |
-
```
|
106 |
-
|
107 |
-
To run inference on example images in `data/images`:
|
108 |
-
```bash
|
109 |
-
$ python detect.py --source data/images --weights yolov5s.pt --conf 0.25
|
110 |
-
|
111 |
-
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])
|
112 |
-
YOLOv5 v4.0-96-g83dc1b4 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)
|
113 |
-
|
114 |
-
Fusing layers...
|
115 |
-
Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPs
|
116 |
-
image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.010s)
|
117 |
-
image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, Done. (0.011s)
|
118 |
-
Results saved to runs/detect/exp2
|
119 |
-
Done. (0.103s)
|
120 |
-
```
|
121 |
-
<img width="500" src="https://user-images.githubusercontent.com/26833433/97107365-685a8d80-16c7-11eb-8c2e-83aac701d8b9.jpeg">
|
122 |
-
|
123 |
-
### PyTorch Hub
|
124 |
|
125 |
-
|
126 |
-
```python
|
127 |
-
import torch
|
128 |
|
129 |
-
|
130 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
|
131 |
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
# Inference
|
136 |
-
results = model(img)
|
137 |
-
results.print() # or .show(), .save()
|
138 |
-
```
|
139 |
|
|
|
140 |
|
141 |
-
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
yolov5x 16
|
149 |
-
```
|
150 |
-
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
|
151 |
|
152 |
|
153 |
-
##
|
154 |
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
|
158 |
-
|
159 |
|
160 |
-
|
161 |
-
- **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.**
|
162 |
-
- **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
|
163 |
-
- **Custom data training**, hyperparameter evolution, and model exportation to any destination.
|
164 |
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
-
## Contact
|
169 |
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
<p>
|
3 |
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
|
4 |
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
|
5 |
+
</p>
|
6 |
+
<br>
|
7 |
+
<div>
|
8 |
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
|
9 |
+
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Open In Kaggle"></a>
|
10 |
+
<br>
|
11 |
+
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
12 |
+
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
13 |
+
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
14 |
+
</div>
|
15 |
+
<br>
|
16 |
+
<div align="center">
|
17 |
+
<a href="https://github.com/ultralytics">
|
18 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
|
19 |
+
</a>
|
20 |
+
<img width="2%" />
|
21 |
+
<a href="https://www.linkedin.com/company/ultralytics">
|
22 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
|
23 |
+
</a>
|
24 |
+
<img width="2%" />
|
25 |
+
<a href="https://twitter.com/ultralytics">
|
26 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
|
27 |
+
</a>
|
28 |
+
<img width="2%" />
|
29 |
+
<a href="https://youtube.com/ultralytics">
|
30 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
|
31 |
+
</a>
|
32 |
+
<img width="2%" />
|
33 |
+
<a href="https://www.facebook.com/ultralytics">
|
34 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
|
35 |
+
</a>
|
36 |
+
<img width="2%" />
|
37 |
+
<a href="https://www.instagram.com/ultralytics/">
|
38 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
|
39 |
+
</a>
|
40 |
+
</div>
|
41 |
+
|
42 |
+
<br>
|
43 |
+
<p>
|
44 |
+
YOLOv5 π is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
|
45 |
+
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
|
46 |
+
</p>
|
47 |
+
|
48 |
+
<!--
|
49 |
+
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
50 |
+
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
|
51 |
+
-->
|
52 |
+
|
53 |
+
</div>
|
54 |
+
|
55 |
+
|
56 |
+
## <div align="center">Documentation</div>
|
57 |
+
|
58 |
+
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
|
59 |
+
|
60 |
+
|
61 |
+
## <div align="center">Quick Start Examples</div>
|
62 |
+
|
63 |
+
|
64 |
+
<details open>
|
65 |
+
<summary>
|
66 |
+
Install
|
67 |
+
</summary>
|
68 |
+
|
69 |
+
Python >= 3.6.0 required with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed:
|
70 |
+
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
|
71 |
+
```bash
|
72 |
+
$ git clone https://github.com/ultralytics/yolov5
|
73 |
+
$ pip install -r requirements.txt
|
74 |
+
```
|
75 |
+
</details>
|
76 |
|
77 |
+
<details open>
|
78 |
+
<summary>Inference</summary>
|
79 |
|
80 |
+
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
```python
|
83 |
+
import torch
|
|
|
|
|
84 |
|
85 |
+
# Model
|
86 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5x, custom
|
87 |
|
88 |
+
# Images
|
89 |
+
img = 'https://ultralytics.com/images/zidane.jpg' # or file, PIL, OpenCV, numpy, multiple
|
90 |
|
91 |
+
# Inference
|
92 |
+
results = model(img)
|
93 |
|
94 |
+
# Results
|
95 |
+
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
|
96 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
</details>
|
99 |
|
100 |
|
|
|
101 |
|
102 |
+
<details>
|
103 |
+
<summary>Inference with detect.py</summary>
|
104 |
+
|
105 |
+
`detect.py` runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
|
106 |
```bash
|
107 |
+
$ python detect.py --source 0 # webcam
|
108 |
+
file.jpg # image
|
109 |
+
file.mp4 # video
|
110 |
+
path/ # directory
|
111 |
+
path/*.jpg # glob
|
112 |
+
'https://youtu.be/NUsoVlDFqZg' # YouTube video
|
113 |
+
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
114 |
```
|
115 |
|
116 |
+
</details>
|
117 |
+
|
118 |
+
<details>
|
119 |
+
<summary>Training</summary>
|
120 |
+
|
121 |
+
Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
|
122 |
+
```bash
|
123 |
+
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
|
124 |
+
yolov5m 40
|
125 |
+
yolov5l 24
|
126 |
+
yolov5x 16
|
127 |
+
```
|
128 |
+
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
|
129 |
+
|
130 |
+
</details>
|
131 |
|
132 |
+
<details>
|
133 |
+
<summary>Tutorials</summary>
|
134 |
|
135 |
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) π RECOMMENDED
|
136 |
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) βοΈ RECOMMENDED
|
|
|
146 |
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) β NEW
|
147 |
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
|
148 |
|
149 |
+
</details>
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
+
## <div align="center">Environments and Integrations</div>
|
|
|
|
|
153 |
|
154 |
+
Get started in seconds with our verified environments and integrations, including [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) for automatic YOLOv5 experiment logging. Click each icon below for details.
|
|
|
155 |
|
156 |
+
<div align="center">
|
157 |
+
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
|
158 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
|
159 |
+
</a>
|
160 |
+
<a href="https://www.kaggle.com/ultralytics/yolov5">
|
161 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
|
162 |
+
</a>
|
163 |
+
<a href="https://hub.docker.com/r/ultralytics/yolov5">
|
164 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
|
165 |
+
</a>
|
166 |
+
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
|
167 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
|
168 |
+
</a>
|
169 |
+
<a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
|
170 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
|
171 |
+
</a>
|
172 |
+
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
|
173 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-small.png" width="15%"/>
|
174 |
+
</a>
|
175 |
+
</div>
|
176 |
|
|
|
|
|
|
|
|
|
177 |
|
178 |
+
## <div align="center">Compete and Win</div>
|
179 |
|
180 |
+
We are super excited about our first-ever Ultralytics YOLOv5 π EXPORT Competition with **$10,000** in cash prizes!
|
181 |
|
182 |
+
<div align="center">
|
183 |
+
<a href="https://github.com/ultralytics/yolov5/discussions/3213">
|
184 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"/>
|
185 |
+
</a>
|
186 |
+
</div>
|
|
|
|
|
|
|
187 |
|
188 |
|
189 |
+
## <div align="center">Why YOLOv5</div>
|
190 |
|
191 |
+
<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313216-f0a5e100-9af5-11eb-8445-c682b60da2e3.png"></p>
|
192 |
+
<details>
|
193 |
+
<summary>YOLOv5-P5 640 Figure (click to expand)</summary>
|
194 |
+
|
195 |
+
<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313219-f1d70e00-9af5-11eb-9973-52b1f98d321a.png"></p>
|
196 |
+
</details>
|
197 |
+
<details>
|
198 |
+
<summary>Figure Notes (click to expand)</summary>
|
199 |
+
|
200 |
+
* GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
|
201 |
+
* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
|
202 |
+
* **Reproduce** by `python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
203 |
+
</details>
|
204 |
|
205 |
|
206 |
+
### Pretrained Checkpoints
|
207 |
|
208 |
+
[assets]: https://github.com/ultralytics/yolov5/releases
|
|
|
|
|
|
|
209 |
|
210 |
+
|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>test<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>V100 (ms) | |params<br><sup>(M) |FLOPs<br><sup>640 (B)
|
211 |
+
|--- |--- |--- |--- |--- |--- |---|--- |---
|
212 |
+
|[YOLOv5s][assets] |640 |36.7 |36.7 |55.4 |**2.0** | |7.3 |17.0
|
213 |
+
|[YOLOv5m][assets] |640 |44.5 |44.5 |63.1 |2.7 | |21.4 |51.3
|
214 |
+
|[YOLOv5l][assets] |640 |48.2 |48.2 |66.9 |3.8 | |47.0 |115.4
|
215 |
+
|[YOLOv5x][assets] |640 |**50.4** |**50.4** |**68.8** |6.1 | |87.7 |218.8
|
216 |
+
| | | | | | | | |
|
217 |
+
|[YOLOv5s6][assets] |1280 |43.3 |43.3 |61.9 |**4.3** | |12.7 |17.4
|
218 |
+
|[YOLOv5m6][assets] |1280 |50.5 |50.5 |68.7 |8.4 | |35.9 |52.4
|
219 |
+
|[YOLOv5l6][assets] |1280 |53.4 |53.4 |71.1 |12.3 | |77.2 |117.7
|
220 |
+
|[YOLOv5x6][assets] |1280 |**54.4** |**54.4** |**72.0** |22.4 | |141.8 |222.9
|
221 |
+
| | | | | | | | |
|
222 |
+
|[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8 | |- |-
|
223 |
|
224 |
+
<details>
|
225 |
+
<summary>Table Notes (click to expand)</summary>
|
226 |
+
|
227 |
+
* AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
|
228 |
+
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
|
229 |
+
* Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
|
230 |
+
* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
|
231 |
+
* Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python test.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
232 |
+
</details>
|
233 |
|
|
|
234 |
|
235 |
+
## <div align="center">Contribute</div>
|
236 |
+
|
237 |
+
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started.
|
238 |
+
|
239 |
+
|
240 |
+
## <div align="center">Contact</div>
|
241 |
+
|
242 |
+
For issues running YOLOv5 please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business or professional support requests please visit
|
243 |
+
[https://ultralytics.com/contact](https://ultralytics.com/contact).
|
244 |
+
|
245 |
+
<br>
|
246 |
+
|
247 |
+
<div align="center">
|
248 |
+
<a href="https://github.com/ultralytics">
|
249 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
|
250 |
+
</a>
|
251 |
+
<img width="3%" />
|
252 |
+
<a href="https://www.linkedin.com/company/ultralytics">
|
253 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
|
254 |
+
</a>
|
255 |
+
<img width="3%" />
|
256 |
+
<a href="https://twitter.com/ultralytics">
|
257 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
|
258 |
+
</a>
|
259 |
+
<img width="3%" />
|
260 |
+
<a href="https://youtube.com/ultralytics">
|
261 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
|
262 |
+
</a>
|
263 |
+
<img width="3%" />
|
264 |
+
<a href="https://www.facebook.com/ultralytics">
|
265 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
|
266 |
+
</a>
|
267 |
+
<img width="3%" />
|
268 |
+
<a href="https://www.instagram.com/ultralytics/">
|
269 |
+
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
|
270 |
+
</a>
|
271 |
+
</div>
|