Global Wheat Detection 2020 Dataset Auto-Download (#2968)
Browse files* Create GlobalWheat2020.yaml
* Update and rename visdrone.yaml to VisDrone.yaml
* Update GlobalWheat2020.yaml
data/GlobalWheat2020.yaml
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Global Wheat 2020 dataset http://www.global-wheat.com/
|
2 |
+
# Train command: python train.py --data GlobalWheat2020.yaml
|
3 |
+
# Default dataset location is next to YOLOv5:
|
4 |
+
# /parent_folder
|
5 |
+
# /datasets/GlobalWheat2020
|
6 |
+
# /yolov5
|
7 |
+
|
8 |
+
|
9 |
+
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
|
10 |
+
train: # 3422 images
|
11 |
+
- ../datasets/GlobalWheat2020/images/arvalis_1
|
12 |
+
- ../datasets/GlobalWheat2020/images/arvalis_2
|
13 |
+
- ../datasets/GlobalWheat2020/images/arvalis_3
|
14 |
+
- ../datasets/GlobalWheat2020/images/ethz_1
|
15 |
+
- ../datasets/GlobalWheat2020/images/rres_1
|
16 |
+
- ../datasets/GlobalWheat2020/images/inrae_1
|
17 |
+
- ../datasets/GlobalWheat2020/images/usask_1
|
18 |
+
|
19 |
+
val: # 748 images (WARNING: train set contains ethz_1)
|
20 |
+
- ../datasets/GlobalWheat2020/images/ethz_1
|
21 |
+
|
22 |
+
test: # 1276
|
23 |
+
- ../datasets/GlobalWheat2020/images/utokyo_1
|
24 |
+
- ../datasets/GlobalWheat2020/images/utokyo_2
|
25 |
+
- ../datasets/GlobalWheat2020/images/nau_1
|
26 |
+
- ../datasets/GlobalWheat2020/images/uq_1
|
27 |
+
|
28 |
+
# number of classes
|
29 |
+
nc: 1
|
30 |
+
|
31 |
+
# class names
|
32 |
+
names: [ 'wheat_head' ]
|
33 |
+
|
34 |
+
|
35 |
+
# download command/URL (optional) --------------------------------------------------------------------------------------
|
36 |
+
download: |
|
37 |
+
from utils.general import download, Path
|
38 |
+
|
39 |
+
# Download
|
40 |
+
dir = Path('../datasets/GlobalWheat2020') # dataset directory
|
41 |
+
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
|
42 |
+
'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
|
43 |
+
download(urls, dir=dir)
|
44 |
+
|
45 |
+
# Make Directories
|
46 |
+
for p in 'annotations', 'images', 'labels':
|
47 |
+
(dir / p).mkdir(parents=True, exist_ok=True)
|
48 |
+
|
49 |
+
# Move
|
50 |
+
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
|
51 |
+
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
|
52 |
+
(dir / p).rename(dir / 'images' / p) # move to /images
|
53 |
+
f = (dir / p).with_suffix('.json') # json file
|
54 |
+
if f.exists():
|
55 |
+
f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
|
data/{visdrone.yaml → VisDrone.yaml}
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset
|
2 |
-
# Train command: python train.py --data
|
3 |
# Default dataset location is next to YOLOv5:
|
4 |
# /parent_folder
|
5 |
# /VisDrone
|
@@ -20,11 +20,7 @@ names: [ 'pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', '
|
|
20 |
|
21 |
# download command/URL (optional) --------------------------------------------------------------------------------------
|
22 |
download: |
|
23 |
-
import os
|
24 |
-
from pathlib import Path
|
25 |
-
|
26 |
-
from utils.general import download
|
27 |
-
|
28 |
|
29 |
def visdrone2yolo(dir):
|
30 |
from PIL import Image
|
|
|
1 |
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset
|
2 |
+
# Train command: python train.py --data VisDrone.yaml
|
3 |
# Default dataset location is next to YOLOv5:
|
4 |
# /parent_folder
|
5 |
# /VisDrone
|
|
|
20 |
|
21 |
# download command/URL (optional) --------------------------------------------------------------------------------------
|
22 |
download: |
|
23 |
+
from utils.general import download, os, Path
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def visdrone2yolo(dir):
|
26 |
from PIL import Image
|