Commit
·
3764277
1
Parent(s):
6e4358f
Created using Colaboratory
Browse files- tutorial.ipynb +11 -53
tutorial.ipynb
CHANGED
@@ -1036,28 +1036,8 @@
|
|
1036 |
"source": [
|
1037 |
"## Local Logging\n",
|
1038 |
"\n",
|
1039 |
-
"All results are logged by default to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc. View train and val jpgs to see mosaics, labels, predictions and augmentation effects. Note
|
1040 |
-
|
1041 |
-
},
|
1042 |
-
{
|
1043 |
-
"cell_type": "code",
|
1044 |
-
"metadata": {
|
1045 |
-
"id": "riPdhraOTCO0"
|
1046 |
-
},
|
1047 |
-
"source": [
|
1048 |
-
"Image(filename='runs/train/exp/train_batch0.jpg', width=800) # train batch 0 mosaics and labels\n",
|
1049 |
-
"Image(filename='runs/train/exp/test_batch0_labels.jpg', width=800) # val batch 0 labels\n",
|
1050 |
-
"Image(filename='runs/train/exp/test_batch0_pred.jpg', width=800) # val batch 0 predictions"
|
1051 |
-
],
|
1052 |
-
"execution_count": null,
|
1053 |
-
"outputs": []
|
1054 |
-
},
|
1055 |
-
{
|
1056 |
-
"cell_type": "markdown",
|
1057 |
-
"metadata": {
|
1058 |
-
"id": "OYG4WFEnTVrI"
|
1059 |
-
},
|
1060 |
-
"source": [
|
1061 |
"> <img src=\"https://user-images.githubusercontent.com/26833433/124931219-48bf8700-e002-11eb-84f0-e05d95b118dd.jpg\" width=\"700\"> \n",
|
1062 |
"`train_batch0.jpg` shows train batch 0 mosaics and labels\n",
|
1063 |
"\n",
|
@@ -1065,38 +1045,16 @@
|
|
1065 |
"`test_batch0_labels.jpg` shows val batch 0 labels\n",
|
1066 |
"\n",
|
1067 |
"> <img src=\"https://user-images.githubusercontent.com/26833433/124931209-46f5c380-e002-11eb-9bd5-7a3de2be9851.jpg\" width=\"700\"> \n",
|
1068 |
-
"`test_batch0_pred.jpg` shows val batch 0 _predictions_"
|
1069 |
-
|
1070 |
-
|
1071 |
-
|
1072 |
-
|
1073 |
-
"metadata": {
|
1074 |
-
"id": "7KN5ghjE6ZWh"
|
1075 |
-
},
|
1076 |
-
"source": [
|
1077 |
-
"Training results are automatically logged to [Tensorboard](https://www.tensorflow.org/tensorboard) and `runs/train/exp/results.txt`, which is plotted as `results.png` (below) after training completes. You can also plot any `results.txt` file manually:"
|
1078 |
-
]
|
1079 |
-
},
|
1080 |
-
{
|
1081 |
-
"cell_type": "code",
|
1082 |
-
"metadata": {
|
1083 |
-
"id": "MDznIqPF7nk3"
|
1084 |
-
},
|
1085 |
-
"source": [
|
1086 |
"from utils.plots import plot_results \n",
|
1087 |
-
"plot_results(
|
1088 |
-
"
|
1089 |
-
|
1090 |
-
|
1091 |
-
"outputs": []
|
1092 |
-
},
|
1093 |
-
{
|
1094 |
-
"cell_type": "markdown",
|
1095 |
-
"metadata": {
|
1096 |
-
"id": "lfrEegCSW3fK"
|
1097 |
-
},
|
1098 |
-
"source": [
|
1099 |
-
"<p align=\"left\"><img width=\"800\" alt=\"COCO128 Training Results\" src=\"https://user-images.githubusercontent.com/26833433/125273596-6300aa00-e30d-11eb-8dc4-70a960c53013.png\"></p>"
|
1100 |
]
|
1101 |
},
|
1102 |
{
|
|
|
1036 |
"source": [
|
1037 |
"## Local Logging\n",
|
1038 |
"\n",
|
1039 |
+
"All results are logged by default to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc. View train and val jpgs to see mosaics, labels, predictions and augmentation effects. Note an Ultralytics **Mosaic Dataloader** is used for training (shown below), which combined each original image with 3 additional random training images.\n",
|
1040 |
+
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1041 |
"> <img src=\"https://user-images.githubusercontent.com/26833433/124931219-48bf8700-e002-11eb-84f0-e05d95b118dd.jpg\" width=\"700\"> \n",
|
1042 |
"`train_batch0.jpg` shows train batch 0 mosaics and labels\n",
|
1043 |
"\n",
|
|
|
1045 |
"`test_batch0_labels.jpg` shows val batch 0 labels\n",
|
1046 |
"\n",
|
1047 |
"> <img src=\"https://user-images.githubusercontent.com/26833433/124931209-46f5c380-e002-11eb-9bd5-7a3de2be9851.jpg\" width=\"700\"> \n",
|
1048 |
+
"`test_batch0_pred.jpg` shows val batch 0 _predictions_\n",
|
1049 |
+
"\n",
|
1050 |
+
"Training results are automatically logged to [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) as `results.csv`, which is plotted as `results.png` (below) after training completes. You can also plot any `results.csv` file manually:\n",
|
1051 |
+
"\n",
|
1052 |
+
"```python\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1053 |
"from utils.plots import plot_results \n",
|
1054 |
+
"plot_results('path/to/results.csv') # plot 'results.csv' as 'results.png'\n",
|
1055 |
+
"```\n",
|
1056 |
+
"\n",
|
1057 |
+
"<p align=\"left\"><img width=\"800\" alt=\"COCO128 Training Results\" src=\"https://user-images.githubusercontent.com/26833433/126906780-8c5e2990-6116-4de6-b78a-367244a33ccf.png\"></p>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1058 |
]
|
1059 |
},
|
1060 |
{
|