glenn-jocher commited on
Commit
3a42abd
·
1 Parent(s): b26a2f6

Created using Colaboratory

Browse files
Files changed (1) hide show
  1. tutorial.ipynb +131 -125
tutorial.ipynb CHANGED
@@ -16,7 +16,7 @@
16
  "accelerator": "GPU",
17
  "widgets": {
18
  "application/vnd.jupyter.widget-state+json": {
19
- "02ac0588602847eea00a0205f87bcce2": {
20
  "model_module": "@jupyter-widgets/controls",
21
  "model_name": "HBoxModel",
22
  "state": {
@@ -28,15 +28,15 @@
28
  "_view_count": null,
29
  "_view_module_version": "1.5.0",
30
  "box_style": "",
31
- "layout": "IPY_MODEL_c472ea49806447a68b5a9221a4ddae85",
32
  "_model_module": "@jupyter-widgets/controls",
33
  "children": [
34
- "IPY_MODEL_091fdf499bd44a80af7281d16da4aa93",
35
- "IPY_MODEL_c79f69c959de4427ba102a87a9f46d80"
36
  ]
37
  }
38
  },
39
- "c472ea49806447a68b5a9221a4ddae85": {
40
  "model_module": "@jupyter-widgets/base",
41
  "model_name": "LayoutModel",
42
  "state": {
@@ -87,12 +87,12 @@
87
  "left": null
88
  }
89
  },
90
- "091fdf499bd44a80af7281d16da4aa93": {
91
  "model_module": "@jupyter-widgets/controls",
92
  "model_name": "FloatProgressModel",
93
  "state": {
94
  "_view_name": "ProgressView",
95
- "style": "IPY_MODEL_c42ae5af74a0491187827d0a1fc259bb",
96
  "_dom_classes": [],
97
  "description": "100%",
98
  "_model_name": "FloatProgressModel",
@@ -107,30 +107,30 @@
107
  "min": 0,
108
  "description_tooltip": null,
109
  "_model_module": "@jupyter-widgets/controls",
110
- "layout": "IPY_MODEL_5a90f72d3a2d46cb9ad915daa3ead8b4"
111
  }
112
  },
113
- "c79f69c959de4427ba102a87a9f46d80": {
114
  "model_module": "@jupyter-widgets/controls",
115
  "model_name": "HTMLModel",
116
  "state": {
117
  "_view_name": "HTMLView",
118
- "style": "IPY_MODEL_2a7ed6611da34662b10e37fd4f4e4438",
119
  "_dom_classes": [],
120
  "description": "",
121
  "_model_name": "HTMLModel",
122
  "placeholder": "​",
123
  "_view_module": "@jupyter-widgets/controls",
124
  "_model_module_version": "1.5.0",
125
- "value": " 781M/781M [00:23<00:00, 35.1MB/s]",
126
  "_view_count": null,
127
  "_view_module_version": "1.5.0",
128
  "description_tooltip": null,
129
  "_model_module": "@jupyter-widgets/controls",
130
- "layout": "IPY_MODEL_fead0160658445bf9e966daa4481cad0"
131
  }
132
  },
133
- "c42ae5af74a0491187827d0a1fc259bb": {
134
  "model_module": "@jupyter-widgets/controls",
135
  "model_name": "ProgressStyleModel",
136
  "state": {
@@ -145,7 +145,7 @@
145
  "_model_module": "@jupyter-widgets/controls"
146
  }
147
  },
148
- "5a90f72d3a2d46cb9ad915daa3ead8b4": {
149
  "model_module": "@jupyter-widgets/base",
150
  "model_name": "LayoutModel",
151
  "state": {
@@ -196,7 +196,7 @@
196
  "left": null
197
  }
198
  },
199
- "2a7ed6611da34662b10e37fd4f4e4438": {
200
  "model_module": "@jupyter-widgets/controls",
201
  "model_name": "DescriptionStyleModel",
202
  "state": {
@@ -210,7 +210,7 @@
210
  "_model_module": "@jupyter-widgets/controls"
211
  }
212
  },
213
- "fead0160658445bf9e966daa4481cad0": {
214
  "model_module": "@jupyter-widgets/base",
215
  "model_name": "LayoutModel",
216
  "state": {
@@ -261,7 +261,7 @@
261
  "left": null
262
  }
263
  },
264
- "cf1ab9fde7444d3e874fcd407ba8f0f8": {
265
  "model_module": "@jupyter-widgets/controls",
266
  "model_name": "HBoxModel",
267
  "state": {
@@ -273,15 +273,15 @@
273
  "_view_count": null,
274
  "_view_module_version": "1.5.0",
275
  "box_style": "",
276
- "layout": "IPY_MODEL_9ee03f9c85f34155b2645e89c9211547",
277
  "_model_module": "@jupyter-widgets/controls",
278
  "children": [
279
- "IPY_MODEL_933ebc451c09490aadf71afbbb3dff2a",
280
- "IPY_MODEL_8e7c55cbca624432a84fa7ad8f3a4016"
281
  ]
282
  }
283
  },
284
- "9ee03f9c85f34155b2645e89c9211547": {
285
  "model_module": "@jupyter-widgets/base",
286
  "model_name": "LayoutModel",
287
  "state": {
@@ -332,50 +332,50 @@
332
  "left": null
333
  }
334
  },
335
- "933ebc451c09490aadf71afbbb3dff2a": {
336
  "model_module": "@jupyter-widgets/controls",
337
  "model_name": "FloatProgressModel",
338
  "state": {
339
  "_view_name": "ProgressView",
340
- "style": "IPY_MODEL_dd62d83b35d04a178840772e82bd2f2e",
341
  "_dom_classes": [],
342
  "description": "100%",
343
  "_model_name": "FloatProgressModel",
344
  "bar_style": "success",
345
- "max": 22090455,
346
  "_view_module": "@jupyter-widgets/controls",
347
  "_model_module_version": "1.5.0",
348
- "value": 22090455,
349
  "_view_count": null,
350
  "_view_module_version": "1.5.0",
351
  "orientation": "horizontal",
352
  "min": 0,
353
  "description_tooltip": null,
354
  "_model_module": "@jupyter-widgets/controls",
355
- "layout": "IPY_MODEL_d5c4f3d1c8b046e3a163faaa6b3a51ab"
356
  }
357
  },
358
- "8e7c55cbca624432a84fa7ad8f3a4016": {
359
  "model_module": "@jupyter-widgets/controls",
360
  "model_name": "HTMLModel",
361
  "state": {
362
  "_view_name": "HTMLView",
363
- "style": "IPY_MODEL_78d1da8efb504b03878ca9ce5b404006",
364
  "_dom_classes": [],
365
  "description": "",
366
  "_model_name": "HTMLModel",
367
  "placeholder": "​",
368
  "_view_module": "@jupyter-widgets/controls",
369
  "_model_module_version": "1.5.0",
370
- "value": " 21.1M/21.1M [00:01<00:00, 16.9MB/s]",
371
  "_view_count": null,
372
  "_view_module_version": "1.5.0",
373
  "description_tooltip": null,
374
  "_model_module": "@jupyter-widgets/controls",
375
- "layout": "IPY_MODEL_d28208ba1213436a93926a01d99d97ae"
376
  }
377
  },
378
- "dd62d83b35d04a178840772e82bd2f2e": {
379
  "model_module": "@jupyter-widgets/controls",
380
  "model_name": "ProgressStyleModel",
381
  "state": {
@@ -390,7 +390,7 @@
390
  "_model_module": "@jupyter-widgets/controls"
391
  }
392
  },
393
- "d5c4f3d1c8b046e3a163faaa6b3a51ab": {
394
  "model_module": "@jupyter-widgets/base",
395
  "model_name": "LayoutModel",
396
  "state": {
@@ -441,7 +441,7 @@
441
  "left": null
442
  }
443
  },
444
- "78d1da8efb504b03878ca9ce5b404006": {
445
  "model_module": "@jupyter-widgets/controls",
446
  "model_name": "DescriptionStyleModel",
447
  "state": {
@@ -455,7 +455,7 @@
455
  "_model_module": "@jupyter-widgets/controls"
456
  }
457
  },
458
- "d28208ba1213436a93926a01d99d97ae": {
459
  "model_module": "@jupyter-widgets/base",
460
  "model_name": "LayoutModel",
461
  "state": {
@@ -550,7 +550,7 @@
550
  "colab": {
551
  "base_uri": "https://localhost:8080/"
552
  },
553
- "outputId": "888d5c41-00e9-47d8-d230-dded99325bea"
554
  },
555
  "source": [
556
  "!git clone https://github.com/ultralytics/yolov5 # clone repo\n",
@@ -563,7 +563,7 @@
563
  "clear_output()\n",
564
  "print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))"
565
  ],
566
- "execution_count": null,
567
  "outputs": [
568
  {
569
  "output_type": "stream",
@@ -670,32 +670,32 @@
670
  "id": "WQPtK1QYVaD_",
671
  "colab": {
672
  "base_uri": "https://localhost:8080/",
673
- "height": 66,
674
  "referenced_widgets": [
675
- "02ac0588602847eea00a0205f87bcce2",
676
- "c472ea49806447a68b5a9221a4ddae85",
677
- "091fdf499bd44a80af7281d16da4aa93",
678
- "c79f69c959de4427ba102a87a9f46d80",
679
- "c42ae5af74a0491187827d0a1fc259bb",
680
- "5a90f72d3a2d46cb9ad915daa3ead8b4",
681
- "2a7ed6611da34662b10e37fd4f4e4438",
682
- "fead0160658445bf9e966daa4481cad0"
683
  ]
684
  },
685
- "outputId": "780d8f5f-766e-4b99-e370-11f9b884c27a"
686
  },
687
  "source": [
688
  "# Download COCO val2017\n",
689
  "torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
690
  "!unzip -q tmp.zip -d ../ && rm tmp.zip"
691
  ],
692
- "execution_count": null,
693
  "outputs": [
694
  {
695
  "output_type": "display_data",
696
  "data": {
697
  "application/vnd.jupyter.widget-view+json": {
698
- "model_id": "02ac0588602847eea00a0205f87bcce2",
699
  "version_minor": 0,
700
  "version_major": 2
701
  },
@@ -723,56 +723,58 @@
723
  "colab": {
724
  "base_uri": "https://localhost:8080/"
725
  },
726
- "outputId": "013935a5-ba81-4810-b723-0cb01cf7bc79"
727
  },
728
  "source": [
729
  "# Run YOLOv5x on COCO val2017\n",
730
  "!python test.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65"
731
  ],
732
- "execution_count": null,
733
  "outputs": [
734
  {
735
  "output_type": "stream",
736
  "text": [
737
- "Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', exist_ok=False, img_size=640, iou_thres=0.65, name='exp', project='runs/test', save_conf=False, save_json=True, save_txt=False, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt'])\n",
738
- "Using torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130MB)\n",
739
  "\n",
740
- "Downloading https://github.com/ultralytics/yolov5/releases/download/v3.1/yolov5x.pt to yolov5x.pt...\n",
741
- "100% 170M/170M [00:05<00:00, 32.6MB/s]\n",
742
  "\n",
743
  "Fusing layers... \n",
744
- "Model Summary: 484 layers, 88922205 parameters, 0 gradients\n",
745
- "Scanning labels ../coco/labels/val2017.cache (4952 found, 0 missing, 48 empty, 0 duplicate, for 5000 images): 5000it [00:00, 14785.71it/s]\n",
746
- " Class Images Targets P R [email protected] [email protected]:.95: 100% 157/157 [01:30<00:00, 1.74it/s]\n",
747
- " all 5e+03 3.63e+04 0.409 0.754 0.672 0.484\n",
748
- "Speed: 5.9/2.1/7.9 ms inference/NMS/total per 640x640 image at batch-size 32\n",
 
 
749
  "\n",
750
  "Evaluating pycocotools mAP... saving runs/test/exp/yolov5x_predictions.json...\n",
751
  "loading annotations into memory...\n",
752
- "Done (t=0.43s)\n",
753
  "creating index...\n",
754
  "index created!\n",
755
  "Loading and preparing results...\n",
756
- "DONE (t=4.67s)\n",
757
  "creating index...\n",
758
  "index created!\n",
759
  "Running per image evaluation...\n",
760
  "Evaluate annotation type *bbox*\n",
761
- "DONE (t=92.11s).\n",
762
  "Accumulating evaluation results...\n",
763
- "DONE (t=13.24s).\n",
764
- " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.492\n",
765
- " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.676\n",
766
- " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.534\n",
767
- " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.318\n",
768
- " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.541\n",
769
- " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.633\n",
770
- " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.376\n",
771
- " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.617\n",
772
- " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.670\n",
773
- " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.493\n",
774
- " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.723\n",
775
- " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.812\n",
776
  "Results saved to runs/test/exp\n"
777
  ],
778
  "name": "stdout"
@@ -833,37 +835,37 @@
833
  "id": "Knxi2ncxWffW",
834
  "colab": {
835
  "base_uri": "https://localhost:8080/",
836
- "height": 66,
837
  "referenced_widgets": [
838
- "cf1ab9fde7444d3e874fcd407ba8f0f8",
839
- "9ee03f9c85f34155b2645e89c9211547",
840
- "933ebc451c09490aadf71afbbb3dff2a",
841
- "8e7c55cbca624432a84fa7ad8f3a4016",
842
- "dd62d83b35d04a178840772e82bd2f2e",
843
- "d5c4f3d1c8b046e3a163faaa6b3a51ab",
844
- "78d1da8efb504b03878ca9ce5b404006",
845
- "d28208ba1213436a93926a01d99d97ae"
846
  ]
847
  },
848
- "outputId": "59f9a94b-21e1-4626-f36a-a8e1b1e5c8f6"
849
  },
850
  "source": [
851
  "# Download COCO128\n",
852
  "torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip')\n",
853
  "!unzip -q tmp.zip -d ../ && rm tmp.zip"
854
  ],
855
- "execution_count": null,
856
  "outputs": [
857
  {
858
  "output_type": "display_data",
859
  "data": {
860
  "application/vnd.jupyter.widget-view+json": {
861
- "model_id": "cf1ab9fde7444d3e874fcd407ba8f0f8",
862
  "version_minor": 0,
863
  "version_major": 2
864
  },
865
  "text/plain": [
866
- "HBox(children=(FloatProgress(value=0.0, max=22090455.0), HTML(value='')))"
867
  ]
868
  },
869
  "metadata": {
@@ -923,86 +925,90 @@
923
  "colab": {
924
  "base_uri": "https://localhost:8080/"
925
  },
926
- "outputId": "138f2d1d-364c-405a-cf13-ea91a2aff915"
927
  },
928
  "source": [
929
  "# Train YOLOv5s on COCO128 for 3 epochs\n",
930
  "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --nosave --cache"
931
  ],
932
- "execution_count": null,
933
  "outputs": [
934
  {
935
  "output_type": "stream",
936
  "text": [
937
- "Using torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130MB)\n",
 
938
  "\n",
939
- "Namespace(adam=False, batch_size=16, bucket='', cache_images=True, cfg='', data='./data/coco128.yaml', device='', epochs=3, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], local_rank=-1, log_imgs=16, multi_scale=False, name='exp', noautoanchor=False, nosave=True, notest=False, project='runs/train', rect=False, resume=False, save_dir='runs/train/exp', single_cls=False, sync_bn=False, total_batch_size=16, weights='yolov5s.pt', workers=8, world_size=1)\n",
 
940
  "Start Tensorboard with \"tensorboard --logdir runs/train\", view at http://localhost:6006/\n",
941
- "2020-11-20 11:45:17.042357: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1\n",
942
- "Hyperparameters {'lr0': 0.01, 'lrf': 0.2, 'momentum': 0.937, 'weight_decay': 0.0005, 'warmup_epochs': 3.0, 'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1, 'box': 0.05, 'cls': 0.5, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2, 'anchor_t': 4.0, 'fl_gamma': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, 'degrees': 0.0, 'translate': 0.1, 'scale': 0.5, 'shear': 0.0, 'perspective': 0.0, 'flipud': 0.0, 'fliplr': 0.5, 'mosaic': 1.0, 'mixup': 0.0}\n",
943
- "Downloading https://github.com/ultralytics/yolov5/releases/download/v3.1/yolov5s.pt to yolov5s.pt...\n",
944
- "100% 14.5M/14.5M [00:01<00:00, 14.8MB/s]\n",
945
  "\n",
946
  "\n",
947
  " from n params module arguments \n",
948
  " 0 -1 1 3520 models.common.Focus [3, 32, 3] \n",
949
  " 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
950
- " 2 -1 1 19904 models.common.BottleneckCSP [64, 64, 1] \n",
951
  " 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n",
952
- " 4 -1 1 161152 models.common.BottleneckCSP [128, 128, 3] \n",
953
  " 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n",
954
- " 6 -1 1 641792 models.common.BottleneckCSP [256, 256, 3] \n",
955
  " 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n",
956
  " 8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]] \n",
957
- " 9 -1 1 1248768 models.common.BottleneckCSP [512, 512, 1, False] \n",
958
  " 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n",
959
  " 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
960
  " 12 [-1, 6] 1 0 models.common.Concat [1] \n",
961
- " 13 -1 1 378624 models.common.BottleneckCSP [512, 256, 1, False] \n",
962
  " 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n",
963
  " 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
964
  " 16 [-1, 4] 1 0 models.common.Concat [1] \n",
965
- " 17 -1 1 95104 models.common.BottleneckCSP [256, 128, 1, False] \n",
966
  " 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n",
967
  " 19 [-1, 14] 1 0 models.common.Concat [1] \n",
968
- " 20 -1 1 313088 models.common.BottleneckCSP [256, 256, 1, False] \n",
969
  " 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n",
970
  " 22 [-1, 10] 1 0 models.common.Concat [1] \n",
971
- " 23 -1 1 1248768 models.common.BottleneckCSP [512, 512, 1, False] \n",
972
  " 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
973
- "Model Summary: 283 layers, 7468157 parameters, 7468157 gradients\n",
974
  "\n",
975
- "Transferred 370/370 items from yolov5s.pt\n",
976
- "Optimizer groups: 62 .bias, 70 conv.weight, 59 other\n",
977
- "Scanning images: 100% 128/128 [00:00<00:00, 5395.63it/s]\n",
978
- "Scanning labels ../coco128/labels/train2017.cache (126 found, 0 missing, 2 empty, 0 duplicate, for 128 images): 128it [00:00, 13972.28it/s]\n",
979
- "Caching images (0.1GB): 100% 128/128 [00:00<00:00, 173.55it/s]\n",
980
- "Scanning labels ../coco128/labels/train2017.cache (126 found, 0 missing, 2 empty, 0 duplicate, for 128 images): 128it [00:00, 8693.98it/s]\n",
981
- "Caching images (0.1GB): 100% 128/128 [00:00<00:00, 133.30it/s]\n",
982
- "NumExpr defaulting to 2 threads.\n",
 
 
983
  "\n",
984
- "Analyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n",
985
  "Image sizes 640 train, 640 test\n",
986
  "Using 2 dataloader workers\n",
987
  "Logging results to runs/train/exp\n",
988
  "Starting training for 3 epochs...\n",
989
  "\n",
990
  " Epoch gpu_mem box obj cls total targets img_size\n",
991
- " 0/2 5.24G 0.04202 0.06745 0.01503 0.1245 194 640: 100% 8/8 [00:03<00:00, 2.01it/s]\n",
992
- " Class Images Targets P R [email protected] [email protected]:.95: 100% 8/8 [00:03<00:00, 2.40it/s]\n",
993
- " all 128 929 0.404 0.758 0.701 0.45\n",
994
  "\n",
995
  " Epoch gpu_mem box obj cls total targets img_size\n",
996
- " 1/2 5.12G 0.04461 0.05874 0.0169 0.1202 142 640: 100% 8/8 [00:01<00:00, 4.14it/s]\n",
997
- " Class Images Targets P R [email protected] [email protected]:.95: 100% 8/8 [00:01<00:00, 5.75it/s]\n",
998
- " all 128 929 0.403 0.772 0.703 0.453\n",
999
  "\n",
1000
  " Epoch gpu_mem box obj cls total targets img_size\n",
1001
- " 2/2 5.12G 0.04445 0.06545 0.01667 0.1266 149 640: 100% 8/8 [00:01<00:00, 4.15it/s]\n",
1002
- " Class Images Targets P R [email protected] [email protected]:.95: 100% 8/8 [00:06<00:00, 1.18it/s]\n",
1003
- " all 128 929 0.395 0.767 0.702 0.452\n",
1004
- "Optimizer stripped from runs/train/exp/weights/last.pt, 15.2MB\n",
1005
- "3 epochs completed in 0.006 hours.\n",
1006
  "\n"
1007
  ],
1008
  "name": "stdout"
 
16
  "accelerator": "GPU",
17
  "widgets": {
18
  "application/vnd.jupyter.widget-state+json": {
19
+ "811fd52fef65422c8267bafcde8a2c3d": {
20
  "model_module": "@jupyter-widgets/controls",
21
  "model_name": "HBoxModel",
22
  "state": {
 
28
  "_view_count": null,
29
  "_view_module_version": "1.5.0",
30
  "box_style": "",
31
+ "layout": "IPY_MODEL_8f41b90117224eef9133a9c3a103dbba",
32
  "_model_module": "@jupyter-widgets/controls",
33
  "children": [
34
+ "IPY_MODEL_ca2fb37af6ed43d4a74cdc9f2ac5c4a5",
35
+ "IPY_MODEL_29419ae5ebb9403ea73f7e5a68037bdd"
36
  ]
37
  }
38
  },
39
+ "8f41b90117224eef9133a9c3a103dbba": {
40
  "model_module": "@jupyter-widgets/base",
41
  "model_name": "LayoutModel",
42
  "state": {
 
87
  "left": null
88
  }
89
  },
90
+ "ca2fb37af6ed43d4a74cdc9f2ac5c4a5": {
91
  "model_module": "@jupyter-widgets/controls",
92
  "model_name": "FloatProgressModel",
93
  "state": {
94
  "_view_name": "ProgressView",
95
+ "style": "IPY_MODEL_6511b4dfb10b48d1bc98bcfb3987bfa0",
96
  "_dom_classes": [],
97
  "description": "100%",
98
  "_model_name": "FloatProgressModel",
 
107
  "min": 0,
108
  "description_tooltip": null,
109
  "_model_module": "@jupyter-widgets/controls",
110
+ "layout": "IPY_MODEL_64f0badf1a8f489885aa984dd62d37dc"
111
  }
112
  },
113
+ "29419ae5ebb9403ea73f7e5a68037bdd": {
114
  "model_module": "@jupyter-widgets/controls",
115
  "model_name": "HTMLModel",
116
  "state": {
117
  "_view_name": "HTMLView",
118
+ "style": "IPY_MODEL_f569911c5cfc4d81bb1bdfa83447afc8",
119
  "_dom_classes": [],
120
  "description": "",
121
  "_model_name": "HTMLModel",
122
  "placeholder": "​",
123
  "_view_module": "@jupyter-widgets/controls",
124
  "_model_module_version": "1.5.0",
125
+ "value": " 781M/781M [00:23&lt;00:00, 34.2MB/s]",
126
  "_view_count": null,
127
  "_view_module_version": "1.5.0",
128
  "description_tooltip": null,
129
  "_model_module": "@jupyter-widgets/controls",
130
+ "layout": "IPY_MODEL_84943ade566440aaa2dcf3b3b27e7074"
131
  }
132
  },
133
+ "6511b4dfb10b48d1bc98bcfb3987bfa0": {
134
  "model_module": "@jupyter-widgets/controls",
135
  "model_name": "ProgressStyleModel",
136
  "state": {
 
145
  "_model_module": "@jupyter-widgets/controls"
146
  }
147
  },
148
+ "64f0badf1a8f489885aa984dd62d37dc": {
149
  "model_module": "@jupyter-widgets/base",
150
  "model_name": "LayoutModel",
151
  "state": {
 
196
  "left": null
197
  }
198
  },
199
+ "f569911c5cfc4d81bb1bdfa83447afc8": {
200
  "model_module": "@jupyter-widgets/controls",
201
  "model_name": "DescriptionStyleModel",
202
  "state": {
 
210
  "_model_module": "@jupyter-widgets/controls"
211
  }
212
  },
213
+ "84943ade566440aaa2dcf3b3b27e7074": {
214
  "model_module": "@jupyter-widgets/base",
215
  "model_name": "LayoutModel",
216
  "state": {
 
261
  "left": null
262
  }
263
  },
264
+ "8501ed1563e4452eac9df6b7a66e8f8c": {
265
  "model_module": "@jupyter-widgets/controls",
266
  "model_name": "HBoxModel",
267
  "state": {
 
273
  "_view_count": null,
274
  "_view_module_version": "1.5.0",
275
  "box_style": "",
276
+ "layout": "IPY_MODEL_d2bb96801e1f46f4a58e02534f7026ff",
277
  "_model_module": "@jupyter-widgets/controls",
278
  "children": [
279
+ "IPY_MODEL_468a796ef06b4a24bcba6fbd4a0a8db5",
280
+ "IPY_MODEL_42ad5c1ea7be4835bffebf90642178f1"
281
  ]
282
  }
283
  },
284
+ "d2bb96801e1f46f4a58e02534f7026ff": {
285
  "model_module": "@jupyter-widgets/base",
286
  "model_name": "LayoutModel",
287
  "state": {
 
332
  "left": null
333
  }
334
  },
335
+ "468a796ef06b4a24bcba6fbd4a0a8db5": {
336
  "model_module": "@jupyter-widgets/controls",
337
  "model_name": "FloatProgressModel",
338
  "state": {
339
  "_view_name": "ProgressView",
340
+ "style": "IPY_MODEL_c58b5536d98f4814831934e9c30c4d78",
341
  "_dom_classes": [],
342
  "description": "100%",
343
  "_model_name": "FloatProgressModel",
344
  "bar_style": "success",
345
+ "max": 22091032,
346
  "_view_module": "@jupyter-widgets/controls",
347
  "_model_module_version": "1.5.0",
348
+ "value": 22091032,
349
  "_view_count": null,
350
  "_view_module_version": "1.5.0",
351
  "orientation": "horizontal",
352
  "min": 0,
353
  "description_tooltip": null,
354
  "_model_module": "@jupyter-widgets/controls",
355
+ "layout": "IPY_MODEL_505597101151486ea29e9ab754544d27"
356
  }
357
  },
358
+ "42ad5c1ea7be4835bffebf90642178f1": {
359
  "model_module": "@jupyter-widgets/controls",
360
  "model_name": "HTMLModel",
361
  "state": {
362
  "_view_name": "HTMLView",
363
+ "style": "IPY_MODEL_de6e7b4b4a1c408c9f89d89b07a13bcd",
364
  "_dom_classes": [],
365
  "description": "",
366
  "_model_name": "HTMLModel",
367
  "placeholder": "​",
368
  "_view_module": "@jupyter-widgets/controls",
369
  "_model_module_version": "1.5.0",
370
+ "value": " 21.1M/21.1M [00:01&lt;00:00, 18.2MB/s]",
371
  "_view_count": null,
372
  "_view_module_version": "1.5.0",
373
  "description_tooltip": null,
374
  "_model_module": "@jupyter-widgets/controls",
375
+ "layout": "IPY_MODEL_f5cc9c7d4c274b2d81327ba3163c43fd"
376
  }
377
  },
378
+ "c58b5536d98f4814831934e9c30c4d78": {
379
  "model_module": "@jupyter-widgets/controls",
380
  "model_name": "ProgressStyleModel",
381
  "state": {
 
390
  "_model_module": "@jupyter-widgets/controls"
391
  }
392
  },
393
+ "505597101151486ea29e9ab754544d27": {
394
  "model_module": "@jupyter-widgets/base",
395
  "model_name": "LayoutModel",
396
  "state": {
 
441
  "left": null
442
  }
443
  },
444
+ "de6e7b4b4a1c408c9f89d89b07a13bcd": {
445
  "model_module": "@jupyter-widgets/controls",
446
  "model_name": "DescriptionStyleModel",
447
  "state": {
 
455
  "_model_module": "@jupyter-widgets/controls"
456
  }
457
  },
458
+ "f5cc9c7d4c274b2d81327ba3163c43fd": {
459
  "model_module": "@jupyter-widgets/base",
460
  "model_name": "LayoutModel",
461
  "state": {
 
550
  "colab": {
551
  "base_uri": "https://localhost:8080/"
552
  },
553
+ "outputId": "c6ad57c2-40b7-4764-b07d-19ee2ceaabaf"
554
  },
555
  "source": [
556
  "!git clone https://github.com/ultralytics/yolov5 # clone repo\n",
 
563
  "clear_output()\n",
564
  "print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))"
565
  ],
566
+ "execution_count": 3,
567
  "outputs": [
568
  {
569
  "output_type": "stream",
 
670
  "id": "WQPtK1QYVaD_",
671
  "colab": {
672
  "base_uri": "https://localhost:8080/",
673
+ "height": 65,
674
  "referenced_widgets": [
675
+ "811fd52fef65422c8267bafcde8a2c3d",
676
+ "8f41b90117224eef9133a9c3a103dbba",
677
+ "ca2fb37af6ed43d4a74cdc9f2ac5c4a5",
678
+ "29419ae5ebb9403ea73f7e5a68037bdd",
679
+ "6511b4dfb10b48d1bc98bcfb3987bfa0",
680
+ "64f0badf1a8f489885aa984dd62d37dc",
681
+ "f569911c5cfc4d81bb1bdfa83447afc8",
682
+ "84943ade566440aaa2dcf3b3b27e7074"
683
  ]
684
  },
685
+ "outputId": "59a7a546-8492-492e-861d-70a2c85a6794"
686
  },
687
  "source": [
688
  "# Download COCO val2017\n",
689
  "torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
690
  "!unzip -q tmp.zip -d ../ && rm tmp.zip"
691
  ],
692
+ "execution_count": 6,
693
  "outputs": [
694
  {
695
  "output_type": "display_data",
696
  "data": {
697
  "application/vnd.jupyter.widget-view+json": {
698
+ "model_id": "811fd52fef65422c8267bafcde8a2c3d",
699
  "version_minor": 0,
700
  "version_major": 2
701
  },
 
723
  "colab": {
724
  "base_uri": "https://localhost:8080/"
725
  },
726
+ "outputId": "427c211e-e283-4e87-f7b3-7b8dfb11a4a5"
727
  },
728
  "source": [
729
  "# Run YOLOv5x on COCO val2017\n",
730
  "!python test.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65"
731
  ],
732
+ "execution_count": 7,
733
  "outputs": [
734
  {
735
  "output_type": "stream",
736
  "text": [
737
+ "Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', exist_ok=False, img_size=640, iou_thres=0.65, name='exp', project='runs/test', save_conf=False, save_hybrid=False, save_json=True, save_txt=False, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt'])\n",
738
+ "YOLOv5 v4.0-21-gb26a2f6 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130.5MB)\n",
739
  "\n",
740
+ "Downloading https://github.com/ultralytics/yolov5/releases/download/v4.0/yolov5x.pt to yolov5x.pt...\n",
741
+ "100% 168M/168M [00:05<00:00, 31.9MB/s]\n",
742
  "\n",
743
  "Fusing layers... \n",
744
+ "Model Summary: 476 layers, 87730285 parameters, 0 gradients, 218.8 GFLOPS\n",
745
+ "\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco/labels/val2017' for images and labels... 4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2791.81it/s]\n",
746
+ "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../coco/labels/val2017.cache\n",
747
+ "\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco/labels/val2017.cache' for images and labels... 4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:00<00:00, 13332180.55it/s]\n",
748
+ " Class Images Targets P R [email protected] [email protected]:.95: 100% 157/157 [01:30<00:00, 1.73it/s]\n",
749
+ " all 5e+03 3.63e+04 0.419 0.765 0.68 0.486\n",
750
+ "Speed: 5.2/2.0/7.2 ms inference/NMS/total per 640x640 image at batch-size 32\n",
751
  "\n",
752
  "Evaluating pycocotools mAP... saving runs/test/exp/yolov5x_predictions.json...\n",
753
  "loading annotations into memory...\n",
754
+ "Done (t=0.41s)\n",
755
  "creating index...\n",
756
  "index created!\n",
757
  "Loading and preparing results...\n",
758
+ "DONE (t=5.26s)\n",
759
  "creating index...\n",
760
  "index created!\n",
761
  "Running per image evaluation...\n",
762
  "Evaluate annotation type *bbox*\n",
763
+ "DONE (t=93.97s).\n",
764
  "Accumulating evaluation results...\n",
765
+ "DONE (t=15.06s).\n",
766
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.501\n",
767
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.687\n",
768
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.544\n",
769
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.338\n",
770
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.548\n",
771
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.637\n",
772
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.378\n",
773
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.628\n",
774
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.680\n",
775
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.520\n",
776
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.729\n",
777
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.826\n",
778
  "Results saved to runs/test/exp\n"
779
  ],
780
  "name": "stdout"
 
835
  "id": "Knxi2ncxWffW",
836
  "colab": {
837
  "base_uri": "https://localhost:8080/",
838
+ "height": 65,
839
  "referenced_widgets": [
840
+ "8501ed1563e4452eac9df6b7a66e8f8c",
841
+ "d2bb96801e1f46f4a58e02534f7026ff",
842
+ "468a796ef06b4a24bcba6fbd4a0a8db5",
843
+ "42ad5c1ea7be4835bffebf90642178f1",
844
+ "c58b5536d98f4814831934e9c30c4d78",
845
+ "505597101151486ea29e9ab754544d27",
846
+ "de6e7b4b4a1c408c9f89d89b07a13bcd",
847
+ "f5cc9c7d4c274b2d81327ba3163c43fd"
848
  ]
849
  },
850
+ "outputId": "c68a3db4-1314-46b4-9e52-83532eb65749"
851
  },
852
  "source": [
853
  "# Download COCO128\n",
854
  "torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip')\n",
855
  "!unzip -q tmp.zip -d ../ && rm tmp.zip"
856
  ],
857
+ "execution_count": 4,
858
  "outputs": [
859
  {
860
  "output_type": "display_data",
861
  "data": {
862
  "application/vnd.jupyter.widget-view+json": {
863
+ "model_id": "8501ed1563e4452eac9df6b7a66e8f8c",
864
  "version_minor": 0,
865
  "version_major": 2
866
  },
867
  "text/plain": [
868
+ "HBox(children=(FloatProgress(value=0.0, max=22091032.0), HTML(value='')))"
869
  ]
870
  },
871
  "metadata": {
 
925
  "colab": {
926
  "base_uri": "https://localhost:8080/"
927
  },
928
+ "outputId": "6af7116a-01ab-4b94-e5d7-b37c17dc95de"
929
  },
930
  "source": [
931
  "# Train YOLOv5s on COCO128 for 3 epochs\n",
932
  "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --nosave --cache"
933
  ],
934
+ "execution_count": 5,
935
  "outputs": [
936
  {
937
  "output_type": "stream",
938
  "text": [
939
+ "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
940
+ "YOLOv5 v4.0-21-gb26a2f6 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130.5MB)\n",
941
  "\n",
942
+ "Namespace(adam=False, batch_size=16, bucket='', cache_images=True, cfg='', data='./data/coco128.yaml', device='', epochs=3, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], local_rank=-1, log_artifacts=False, log_imgs=16, multi_scale=False, name='exp', noautoanchor=False, nosave=True, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs/train/exp', single_cls=False, sync_bn=False, total_batch_size=16, weights='yolov5s.pt', workers=8, world_size=1)\n",
943
+ "\u001b[34m\u001b[1mwandb: \u001b[0mInstall Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)\n",
944
  "Start Tensorboard with \"tensorboard --logdir runs/train\", view at http://localhost:6006/\n",
945
+ "2021-01-17 19:56:03.945851: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1\n",
946
+ "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0\n",
947
+ "Downloading https://github.com/ultralytics/yolov5/releases/download/v4.0/yolov5s.pt to yolov5s.pt...\n",
948
+ "100% 14.1M/14.1M [00:00<00:00, 15.8MB/s]\n",
949
  "\n",
950
  "\n",
951
  " from n params module arguments \n",
952
  " 0 -1 1 3520 models.common.Focus [3, 32, 3] \n",
953
  " 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
954
+ " 2 -1 1 18816 models.common.C3 [64, 64, 1] \n",
955
  " 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n",
956
+ " 4 -1 1 156928 models.common.C3 [128, 128, 3] \n",
957
  " 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n",
958
+ " 6 -1 1 625152 models.common.C3 [256, 256, 3] \n",
959
  " 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n",
960
  " 8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]] \n",
961
+ " 9 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
962
  " 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n",
963
  " 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
964
  " 12 [-1, 6] 1 0 models.common.Concat [1] \n",
965
+ " 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n",
966
  " 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n",
967
  " 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
968
  " 16 [-1, 4] 1 0 models.common.Concat [1] \n",
969
+ " 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n",
970
  " 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n",
971
  " 19 [-1, 14] 1 0 models.common.Concat [1] \n",
972
+ " 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n",
973
  " 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n",
974
  " 22 [-1, 10] 1 0 models.common.Concat [1] \n",
975
+ " 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
976
  " 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
977
+ "Model Summary: 283 layers, 7276605 parameters, 7276605 gradients, 17.1 GFLOPS\n",
978
  "\n",
979
+ "Transferred 362/362 items from yolov5s.pt\n",
980
+ "Scaled weight_decay = 0.0005\n",
981
+ "Optimizer groups: 62 .bias, 62 conv.weight, 59 other\n",
982
+ "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../coco128/labels/train2017' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 2647.74it/s]\n",
983
+ "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: ../coco128/labels/train2017.cache\n",
984
+ "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../coco128/labels/train2017.cache' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 1503840.09it/s]\n",
985
+ "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 176.03it/s]\n",
986
+ "\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco128/labels/train2017.cache' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 24200.82it/s]\n",
987
+ "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:01<00:00, 123.25it/s]\n",
988
+ "Plotting labels... \n",
989
  "\n",
990
+ "\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n",
991
  "Image sizes 640 train, 640 test\n",
992
  "Using 2 dataloader workers\n",
993
  "Logging results to runs/train/exp\n",
994
  "Starting training for 3 epochs...\n",
995
  "\n",
996
  " Epoch gpu_mem box obj cls total targets img_size\n",
997
+ " 0/2 3.27G 0.04357 0.06779 0.01869 0.1301 207 640: 100% 8/8 [00:04<00:00, 1.95it/s]\n",
998
+ " Class Images Targets P R [email protected] [email protected]:.95: 100% 8/8 [00:05<00:00, 1.36it/s]\n",
999
+ " all 128 929 0.392 0.732 0.657 0.428\n",
1000
  "\n",
1001
  " Epoch gpu_mem box obj cls total targets img_size\n",
1002
+ " 1/2 7.47G 0.04308 0.06636 0.02083 0.1303 227 640: 100% 8/8 [00:02<00:00, 3.88it/s]\n",
1003
+ " Class Images Targets P R [email protected] [email protected]:.95: 100% 8/8 [00:01<00:00, 5.07it/s]\n",
1004
+ " all 128 929 0.387 0.737 0.657 0.432\n",
1005
  "\n",
1006
  " Epoch gpu_mem box obj cls total targets img_size\n",
1007
+ " 2/2 7.48G 0.04461 0.06864 0.01866 0.1319 191 640: 100% 8/8 [00:02<00:00, 3.57it/s]\n",
1008
+ " Class Images Targets P R [email protected] [email protected]:.95: 100% 8/8 [00:02<00:00, 2.82it/s]\n",
1009
+ " all 128 929 0.385 0.742 0.658 0.431\n",
1010
+ "Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
1011
+ "3 epochs completed in 0.007 hours.\n",
1012
  "\n"
1013
  ],
1014
  "name": "stdout"