Refactor `export.py` (#4080)
Browse files* Refactor `export.py`
* cleanup
* Update check_requirements()
* Update export.py
export.py
CHANGED
@@ -24,6 +24,78 @@ from utils.general import colorstr, check_img_size, check_requirements, file_siz
|
|
24 |
from utils.torch_utils import select_device
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def run(weights='./yolov5s.pt', # weights path
|
28 |
img_size=(640, 640), # image (height, width)
|
29 |
batch_size=1, # batch size
|
@@ -40,12 +112,13 @@ def run(weights='./yolov5s.pt', # weights path
|
|
40 |
t = time.time()
|
41 |
include = [x.lower() for x in include]
|
42 |
img_size *= 2 if len(img_size) == 1 else 1 # expand
|
|
|
43 |
|
44 |
# Load PyTorch model
|
45 |
device = select_device(device)
|
46 |
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
|
47 |
model = attempt_load(weights, map_location=device) # load FP32 model
|
48 |
-
|
49 |
|
50 |
# Input
|
51 |
gs = int(max(model.stride)) # grid size (max stride)
|
@@ -57,7 +130,6 @@ def run(weights='./yolov5s.pt', # weights path
|
|
57 |
img, model = img.half(), model.half() # to FP16
|
58 |
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
|
59 |
for k, m in model.named_modules():
|
60 |
-
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
61 |
if isinstance(m, Conv): # assign export-friendly activations
|
62 |
if isinstance(m.act, nn.Hardswish):
|
63 |
m.act = Hardswish()
|
@@ -72,73 +144,13 @@ def run(weights='./yolov5s.pt', # weights path
|
|
72 |
y = model(img) # dry runs
|
73 |
print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)")
|
74 |
|
75 |
-
#
|
76 |
-
if 'torchscript' in include or 'coreml' in include:
|
77 |
-
prefix = colorstr('TorchScript:')
|
78 |
-
try:
|
79 |
-
print(f'\n{prefix} starting export with torch {torch.__version__}...')
|
80 |
-
f = weights.replace('.pt', '.torchscript.pt') # filename
|
81 |
-
ts = torch.jit.trace(model, img, strict=False)
|
82 |
-
(optimize_for_mobile(ts) if optimize else ts).save(f)
|
83 |
-
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
84 |
-
except Exception as e:
|
85 |
-
print(f'{prefix} export failure: {e}')
|
86 |
-
|
87 |
-
# ONNX export ------------------------------------------------------------------------------------------------------
|
88 |
if 'onnx' in include:
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
f = weights.replace('.pt', '.onnx') # filename
|
95 |
-
torch.onnx.export(model, img, f, verbose=False, opset_version=opset_version,
|
96 |
-
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
97 |
-
do_constant_folding=not train,
|
98 |
-
input_names=['images'],
|
99 |
-
output_names=['output'],
|
100 |
-
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
|
101 |
-
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
102 |
-
} if dynamic else None)
|
103 |
-
|
104 |
-
# Checks
|
105 |
-
model_onnx = onnx.load(f) # load onnx model
|
106 |
-
onnx.checker.check_model(model_onnx) # check onnx model
|
107 |
-
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
|
108 |
-
|
109 |
-
# Simplify
|
110 |
-
if simplify:
|
111 |
-
try:
|
112 |
-
check_requirements(['onnx-simplifier'])
|
113 |
-
import onnxsim
|
114 |
-
|
115 |
-
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
116 |
-
model_onnx, check = onnxsim.simplify(
|
117 |
-
model_onnx,
|
118 |
-
dynamic_input_shape=dynamic,
|
119 |
-
input_shapes={'images': list(img.shape)} if dynamic else None)
|
120 |
-
assert check, 'assert check failed'
|
121 |
-
onnx.save(model_onnx, f)
|
122 |
-
except Exception as e:
|
123 |
-
print(f'{prefix} simplifier failure: {e}')
|
124 |
-
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
125 |
-
except Exception as e:
|
126 |
-
print(f'{prefix} export failure: {e}')
|
127 |
-
|
128 |
-
# CoreML export ----------------------------------------------------------------------------------------------------
|
129 |
-
if 'coreml' in include:
|
130 |
-
prefix = colorstr('CoreML:')
|
131 |
-
try:
|
132 |
-
import coremltools as ct
|
133 |
-
|
134 |
-
print(f'{prefix} starting export with coremltools {ct.__version__}...')
|
135 |
-
assert train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`'
|
136 |
-
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
137 |
-
f = weights.replace('.pt', '.mlmodel') # filename
|
138 |
-
model.save(f)
|
139 |
-
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
140 |
-
except Exception as e:
|
141 |
-
print(f'{prefix} export failure: {e}')
|
142 |
|
143 |
# Finish
|
144 |
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')
|
|
|
24 |
from utils.torch_utils import select_device
|
25 |
|
26 |
|
27 |
+
def export_torchscript(model, img, file, optimize):
|
28 |
+
# TorchScript model export
|
29 |
+
prefix = colorstr('TorchScript:')
|
30 |
+
try:
|
31 |
+
print(f'\n{prefix} starting export with torch {torch.__version__}...')
|
32 |
+
f = file.with_suffix('.torchscript.pt')
|
33 |
+
ts = torch.jit.trace(model, img, strict=False)
|
34 |
+
(optimize_for_mobile(ts) if optimize else ts).save(f)
|
35 |
+
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
36 |
+
return ts
|
37 |
+
except Exception as e:
|
38 |
+
print(f'{prefix} export failure: {e}')
|
39 |
+
|
40 |
+
|
41 |
+
def export_onnx(model, img, file, opset_version, train, dynamic, simplify):
|
42 |
+
# ONNX model export
|
43 |
+
prefix = colorstr('ONNX:')
|
44 |
+
try:
|
45 |
+
check_requirements(('onnx', 'onnx-simplifier'))
|
46 |
+
import onnx
|
47 |
+
|
48 |
+
print(f'{prefix} starting export with onnx {onnx.__version__}...')
|
49 |
+
f = file.with_suffix('.onnx')
|
50 |
+
torch.onnx.export(model, img, f, verbose=False, opset_version=opset_version,
|
51 |
+
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
52 |
+
do_constant_folding=not train,
|
53 |
+
input_names=['images'],
|
54 |
+
output_names=['output'],
|
55 |
+
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
|
56 |
+
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
57 |
+
} if dynamic else None)
|
58 |
+
|
59 |
+
# Checks
|
60 |
+
model_onnx = onnx.load(f) # load onnx model
|
61 |
+
onnx.checker.check_model(model_onnx) # check onnx model
|
62 |
+
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
|
63 |
+
|
64 |
+
# Simplify
|
65 |
+
if simplify:
|
66 |
+
try:
|
67 |
+
import onnxsim
|
68 |
+
|
69 |
+
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
70 |
+
model_onnx, check = onnxsim.simplify(
|
71 |
+
model_onnx,
|
72 |
+
dynamic_input_shape=dynamic,
|
73 |
+
input_shapes={'images': list(img.shape)} if dynamic else None)
|
74 |
+
assert check, 'assert check failed'
|
75 |
+
onnx.save(model_onnx, f)
|
76 |
+
except Exception as e:
|
77 |
+
print(f'{prefix} simplifier failure: {e}')
|
78 |
+
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
79 |
+
except Exception as e:
|
80 |
+
print(f'{prefix} export failure: {e}')
|
81 |
+
|
82 |
+
|
83 |
+
def export_coreml(ts_model, img, file, train):
|
84 |
+
# CoreML model export
|
85 |
+
prefix = colorstr('CoreML:')
|
86 |
+
try:
|
87 |
+
import coremltools as ct
|
88 |
+
|
89 |
+
print(f'{prefix} starting export with coremltools {ct.__version__}...')
|
90 |
+
f = file.with_suffix('.mlmodel')
|
91 |
+
assert train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`'
|
92 |
+
model = ct.convert(ts_model, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
93 |
+
model.save(f)
|
94 |
+
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
95 |
+
except Exception as e:
|
96 |
+
print(f'{prefix} export failure: {e}')
|
97 |
+
|
98 |
+
|
99 |
def run(weights='./yolov5s.pt', # weights path
|
100 |
img_size=(640, 640), # image (height, width)
|
101 |
batch_size=1, # batch size
|
|
|
112 |
t = time.time()
|
113 |
include = [x.lower() for x in include]
|
114 |
img_size *= 2 if len(img_size) == 1 else 1 # expand
|
115 |
+
file = Path(weights)
|
116 |
|
117 |
# Load PyTorch model
|
118 |
device = select_device(device)
|
119 |
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
|
120 |
model = attempt_load(weights, map_location=device) # load FP32 model
|
121 |
+
names = model.names
|
122 |
|
123 |
# Input
|
124 |
gs = int(max(model.stride)) # grid size (max stride)
|
|
|
130 |
img, model = img.half(), model.half() # to FP16
|
131 |
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
|
132 |
for k, m in model.named_modules():
|
|
|
133 |
if isinstance(m, Conv): # assign export-friendly activations
|
134 |
if isinstance(m.act, nn.Hardswish):
|
135 |
m.act = Hardswish()
|
|
|
144 |
y = model(img) # dry runs
|
145 |
print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)")
|
146 |
|
147 |
+
# Exports
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
if 'onnx' in include:
|
149 |
+
export_onnx(model, img, file, opset_version, train, dynamic, simplify)
|
150 |
+
if 'torchscript' in include or 'coreml' in include:
|
151 |
+
ts = export_torchscript(model, img, file, optimize)
|
152 |
+
if 'coreml' in include:
|
153 |
+
export_coreml(ts, img, file, train)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
# Finish
|
156 |
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')
|