add save_dir arg to plot_lr_scheduler, default to current dir.
Browse filesUncomment plot_lr_scheduler in train() and pass log_dir as save location
- train.py +1 -1
- utils/utils.py +1 -1
train.py
CHANGED
@@ -148,7 +148,7 @@ def train(hyp):
|
|
148 |
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
149 |
scheduler.last_epoch = start_epoch - 1 # do not move
|
150 |
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
|
151 |
-
|
152 |
|
153 |
# Initialize distributed training
|
154 |
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
|
|
|
148 |
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
149 |
scheduler.last_epoch = start_epoch - 1 # do not move
|
150 |
# https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
|
151 |
+
plot_lr_scheduler(optimizer, scheduler, epochs, save_dir = log_dir)
|
152 |
|
153 |
# Initialize distributed training
|
154 |
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
|
utils/utils.py
CHANGED
@@ -1005,7 +1005,7 @@ def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max
|
|
1005 |
return mosaic
|
1006 |
|
1007 |
|
1008 |
-
def plot_lr_scheduler(optimizer, scheduler, epochs=300):
|
1009 |
# Plot LR simulating training for full epochs
|
1010 |
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
|
1011 |
y = []
|
|
|
1005 |
return mosaic
|
1006 |
|
1007 |
|
1008 |
+
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir='./'):
|
1009 |
# Plot LR simulating training for full epochs
|
1010 |
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
|
1011 |
y = []
|