Commit
·
4d7f222
1
Parent(s):
8666bc5
Update export.py with v3.0 Hardswish() support
Browse files- models/export.py +12 -7
- utils/activations.py +3 -3
models/export.py
CHANGED
@@ -8,12 +8,14 @@ import argparse
|
|
8 |
|
9 |
import torch
|
10 |
|
|
|
|
|
|
|
11 |
from utils.general import set_logging
|
12 |
-
from utils.google_utils import attempt_download
|
13 |
|
14 |
if __name__ == '__main__':
|
15 |
parser = argparse.ArgumentParser()
|
16 |
-
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
|
17 |
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
|
18 |
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
19 |
opt = parser.parse_args()
|
@@ -25,12 +27,15 @@ if __name__ == '__main__':
|
|
25 |
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
|
26 |
|
27 |
# Load PyTorch model
|
28 |
-
|
29 |
-
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
|
30 |
-
model.eval()
|
31 |
-
model.fuse()
|
32 |
|
33 |
# Update model
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
model.model[-1].export = True # set Detect() layer export=True
|
35 |
y = model(img) # dry run
|
36 |
|
@@ -56,7 +61,7 @@ if __name__ == '__main__':
|
|
56 |
# Checks
|
57 |
onnx_model = onnx.load(f) # load onnx model
|
58 |
onnx.checker.check_model(onnx_model) # check onnx model
|
59 |
-
print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
60 |
print('ONNX export success, saved as %s' % f)
|
61 |
except Exception as e:
|
62 |
print('ONNX export failure: %s' % e)
|
|
|
8 |
|
9 |
import torch
|
10 |
|
11 |
+
from models.common import Conv
|
12 |
+
from models.experimental import attempt_load
|
13 |
+
from utils.activations import Hardswish
|
14 |
from utils.general import set_logging
|
|
|
15 |
|
16 |
if __name__ == '__main__':
|
17 |
parser = argparse.ArgumentParser()
|
18 |
+
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
|
19 |
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
|
20 |
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
21 |
opt = parser.parse_args()
|
|
|
27 |
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
|
28 |
|
29 |
# Load PyTorch model
|
30 |
+
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model
|
|
|
|
|
|
|
31 |
|
32 |
# Update model
|
33 |
+
for k, m in model.named_modules():
|
34 |
+
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
|
35 |
+
if isinstance(m, Conv):
|
36 |
+
m.act = Hardswish() # assign activation
|
37 |
+
# if isinstance(m, Detect):
|
38 |
+
# m.forward = m.forward_export # assign forward (optional)
|
39 |
model.model[-1].export = True # set Detect() layer export=True
|
40 |
y = model(img) # dry run
|
41 |
|
|
|
61 |
# Checks
|
62 |
onnx_model = onnx.load(f) # load onnx model
|
63 |
onnx.checker.check_model(onnx_model) # check onnx model
|
64 |
+
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
65 |
print('ONNX export success, saved as %s' % f)
|
66 |
except Exception as e:
|
67 |
print('ONNX export failure: %s' % e)
|
utils/activations.py
CHANGED
@@ -10,11 +10,11 @@ class Swish(nn.Module): #
|
|
10 |
return x * torch.sigmoid(x)
|
11 |
|
12 |
|
13 |
-
class Hardswish(nn.Module): #
|
14 |
@staticmethod
|
15 |
def forward(x):
|
16 |
-
# return x * F.hardsigmoid(x)
|
17 |
-
return x * F.hardtanh(x + 3, 0., 6.) / 6.
|
18 |
|
19 |
|
20 |
class MemoryEfficientSwish(nn.Module):
|
|
|
10 |
return x * torch.sigmoid(x)
|
11 |
|
12 |
|
13 |
+
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
|
14 |
@staticmethod
|
15 |
def forward(x):
|
16 |
+
# return x * F.hardsigmoid(x) # for torchscript and CoreML
|
17 |
+
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
|
18 |
|
19 |
|
20 |
class MemoryEfficientSwish(nn.Module):
|