glenn-jocher commited on
Commit
520f5de
·
1 Parent(s): f310ca3

Label caching foundational re-write #306

Browse files
Files changed (1) hide show
  1. utils/datasets.py +51 -54
utils/datasets.py CHANGED
@@ -26,6 +26,11 @@ for orientation in ExifTags.TAGS.keys():
26
  break
27
 
28
 
 
 
 
 
 
29
  def exif_size(img):
30
  # Returns exif-corrected PIL size
31
  s = img.size # (width, height)
@@ -280,7 +285,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
280
  def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
281
  cache_images=False, single_cls=False, stride=32, pad=0.0):
282
  try:
283
- f = []
284
  for p in path if isinstance(path, list) else [path]:
285
  p = str(Path(p)) # os-agnostic
286
  parent = str(Path(p).parent) + os.sep
@@ -292,7 +297,6 @@ class LoadImagesAndLabels(Dataset): # for training/testing
292
  f += glob.iglob(p + os.sep + '*.*')
293
  else:
294
  raise Exception('%s does not exist' % p)
295
- path = p # *.npy dir
296
  self.img_files = [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats]
297
  except Exception as e:
298
  raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
@@ -314,20 +318,22 @@ class LoadImagesAndLabels(Dataset): # for training/testing
314
  self.stride = stride
315
 
316
  # Define labels
317
- self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt')
318
- for x in self.img_files]
319
-
320
- # Read image shapes (wh)
321
- sp = path.replace('.txt', '') + '.shapes' # shapefile path
322
- try:
323
- with open(sp, 'r') as f: # read existing shapefile
324
- s = [x.split() for x in f.read().splitlines()]
325
- assert len(s) == n, 'Shapefile out of sync'
326
- except:
327
- s = [exif_size(Image.open(f)) for f in tqdm(self.img_files, desc='Reading image shapes')]
328
- np.savetxt(sp, s, fmt='%g') # overwrites existing (if any)
329
 
330
- self.shapes = np.array(s, dtype=np.float64)
 
 
 
331
 
332
  # Rectangular Training https://github.com/ultralytics/yolov3/issues/232
333
  if self.rect:
@@ -353,33 +359,11 @@ class LoadImagesAndLabels(Dataset): # for training/testing
353
  self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
354
 
355
  # Cache labels
356
- self.imgs = [None] * n
357
- self.labels = [np.zeros((0, 5), dtype=np.float32)] * n
358
  create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
359
  nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
360
- np_labels_path = str(Path(self.label_files[0]).parent) + '.npy' # saved labels in *.npy file
361
- if os.path.isfile(np_labels_path):
362
- s = np_labels_path # print string
363
- x = np.load(np_labels_path, allow_pickle=True)
364
- if len(x) == n:
365
- self.labels = x
366
- labels_loaded = True
367
- else:
368
- s = path.replace('images', 'labels')
369
-
370
  pbar = tqdm(self.label_files)
371
  for i, file in enumerate(pbar):
372
- if labels_loaded:
373
- l = self.labels[i]
374
- # np.savetxt(file, l, '%g') # save *.txt from *.npy file
375
- else:
376
- try:
377
- with open(file, 'r') as f:
378
- l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
379
- except:
380
- nm += 1 # print('missing labels for image %s' % self.img_files[i]) # file missing
381
- continue
382
-
383
  if l.shape[0]:
384
  assert l.shape[1] == 5, '> 5 label columns: %s' % file
385
  assert (l >= 0).all(), 'negative labels: %s' % file
@@ -425,15 +409,13 @@ class LoadImagesAndLabels(Dataset): # for training/testing
425
  ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
426
  # os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
427
 
428
- pbar.desc = 'Caching labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
429
- s, nf, nm, ne, nd, n)
430
- assert nf > 0 or n == 20288, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
431
- if not labels_loaded and n > 1000:
432
- print('Saving labels to %s for faster future loading' % np_labels_path)
433
- np.save(np_labels_path, self.labels) # save for next time
434
 
435
  # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
436
- if cache_images: # if training
 
437
  gb = 0 # Gigabytes of cached images
438
  pbar = tqdm(range(len(self.img_files)), desc='Caching images')
439
  self.img_hw0, self.img_hw = [None] * n, [None] * n
@@ -442,15 +424,30 @@ class LoadImagesAndLabels(Dataset): # for training/testing
442
  gb += self.imgs[i].nbytes
443
  pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
444
 
445
- # Detect corrupted images https://medium.com/joelthchao/programmatically-detect-corrupted-image-8c1b2006c3d3
446
- detect_corrupted_images = False
447
- if detect_corrupted_images:
448
- from skimage import io # conda install -c conda-forge scikit-image
449
- for file in tqdm(self.img_files, desc='Detecting corrupted images'):
450
- try:
451
- _ = io.imread(file)
452
- except:
453
- print('Corrupted image detected: %s' % file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454
 
455
  def __len__(self):
456
  return len(self.img_files)
 
26
  break
27
 
28
 
29
+ def get_hash(files):
30
+ # Returns a single hash value of a list of files
31
+ return sum(os.path.getsize(f) for f in files)
32
+
33
+
34
  def exif_size(img):
35
  # Returns exif-corrected PIL size
36
  s = img.size # (width, height)
 
285
  def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
286
  cache_images=False, single_cls=False, stride=32, pad=0.0):
287
  try:
288
+ f = [] # image files
289
  for p in path if isinstance(path, list) else [path]:
290
  p = str(Path(p)) # os-agnostic
291
  parent = str(Path(p).parent) + os.sep
 
297
  f += glob.iglob(p + os.sep + '*.*')
298
  else:
299
  raise Exception('%s does not exist' % p)
 
300
  self.img_files = [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats]
301
  except Exception as e:
302
  raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
 
318
  self.stride = stride
319
 
320
  # Define labels
321
+ self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt') for x in
322
+ self.img_files]
323
+
324
+ # Check cache
325
+ cache_path = str(Path(self.label_files[0]).parent) + '.cache' # cached labels
326
+ if os.path.isfile(cache_path):
327
+ cache = torch.load(cache_path) # load
328
+ if cache['hash'] != get_hash(self.label_files + self.img_files): # dataset changed
329
+ cache = self.cache_labels(cache_path) # re-cache
330
+ else:
331
+ cache = self.cache_labels(cache_path) # cache
 
332
 
333
+ # Get labels
334
+ labels, shapes = zip(*[cache[x] for x in self.img_files])
335
+ self.shapes = np.array(shapes, dtype=np.float64)
336
+ self.labels = list(labels)
337
 
338
  # Rectangular Training https://github.com/ultralytics/yolov3/issues/232
339
  if self.rect:
 
359
  self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
360
 
361
  # Cache labels
 
 
362
  create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
363
  nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
 
 
 
 
 
 
 
 
 
 
364
  pbar = tqdm(self.label_files)
365
  for i, file in enumerate(pbar):
366
+ l = self.labels[i] # label
 
 
 
 
 
 
 
 
 
 
367
  if l.shape[0]:
368
  assert l.shape[1] == 5, '> 5 label columns: %s' % file
369
  assert (l >= 0).all(), 'negative labels: %s' % file
 
409
  ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
410
  # os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
411
 
412
+ pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
413
+ cache_path, nf, nm, ne, nd, n)
414
+ assert nf > 0, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
 
 
 
415
 
416
  # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
417
+ self.imgs = [None] * n
418
+ if cache_images:
419
  gb = 0 # Gigabytes of cached images
420
  pbar = tqdm(range(len(self.img_files)), desc='Caching images')
421
  self.img_hw0, self.img_hw = [None] * n, [None] * n
 
424
  gb += self.imgs[i].nbytes
425
  pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
426
 
427
+ def cache_labels(self, path='labels.cache'):
428
+ # Cache dataset labels, check images and read shapes
429
+ x = {} # dict
430
+ pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
431
+ for (img, label) in pbar:
432
+ try:
433
+ l = []
434
+ image = Image.open(img)
435
+ image.verify() # PIL verify
436
+ # _ = io.imread(img) # skimage verify (from skimage import io)
437
+ shape = exif_size(image) # image size
438
+ if os.path.isfile(label):
439
+ with open(label, 'r') as f:
440
+ l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels
441
+ if len(l) == 0:
442
+ l = np.zeros((0, 5), dtype=np.float32)
443
+ x[img] = [l, shape]
444
+ except Exception as e:
445
+ x[img] = None
446
+ print('WARNING: %s: %s' % (img, e))
447
+
448
+ x['hash'] = get_hash(self.label_files + self.img_files)
449
+ torch.save(x, path) # save for next time
450
+ return x
451
 
452
  def __len__(self):
453
  return len(self.img_files)