Commit
·
57a0ae3
1
Parent(s):
95c46f7
AutoAnchor implementation
Browse files- utils/utils.py +45 -50
utils/utils.py
CHANGED
@@ -53,18 +53,23 @@ def check_img_size(img_size, s=32):
|
|
53 |
|
54 |
|
55 |
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
56 |
-
# Check
|
|
|
57 |
anchors = model.module.model[-1].anchor_grid if hasattr(model, 'module') else model.model[-1].anchor_grid
|
58 |
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
59 |
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh
|
60 |
ratio = wh[:, None] / anchors.view(-1, 2).cpu()[None] # ratio
|
61 |
m = torch.max(ratio, 1. / ratio).max(2)[0] # max ratio
|
62 |
bpr = (m.min(1)[0] < thr).float().mean() # best possible recall
|
63 |
-
mr = (m < thr).float().mean() # match ratio
|
64 |
-
|
65 |
-
print(
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
|
69 |
|
70 |
def check_file(file):
|
@@ -689,14 +694,14 @@ def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43):
|
|
689 |
shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images
|
690 |
|
691 |
|
692 |
-
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=
|
693 |
""" Creates kmeans-evolved anchors from training dataset
|
694 |
|
695 |
Arguments:
|
696 |
-
path: path to dataset *.yaml
|
697 |
n: number of anchors
|
698 |
-
img_size:
|
699 |
-
thr:
|
700 |
gen: generations to evolve anchors using genetic algorithm
|
701 |
|
702 |
Return:
|
@@ -705,52 +710,41 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=(640, 640), thr=0.20
|
|
705 |
Usage:
|
706 |
from utils.utils import *; _ = kmean_anchors()
|
707 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
708 |
|
709 |
-
|
|
|
|
|
710 |
|
711 |
def print_results(k):
|
712 |
k = k[np.argsort(k.prod(1))] # sort small to large
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
# r = wh[:, None] / k[None]
|
719 |
-
# ar = torch.max(r, 1. / r).max(2)[0]
|
720 |
-
# max_ar = ar.min(1)[0]
|
721 |
-
# bpr, aat = (max_ar < thr).float().mean(), (ar < thr).float().mean() * n # best possible recall, anch > thr
|
722 |
-
|
723 |
-
print('%.2f iou_thr: %.3f best possible recall, %.2f anchors > thr' % (thr, bpr, aat))
|
724 |
-
print('n=%g, img_size=%s, IoU_all=%.3f/%.3f-mean/best, IoU>thr=%.3f-mean: ' %
|
725 |
-
(n, img_size, iou.mean(), max_iou.mean(), iou[iou > thr].mean()), end='')
|
726 |
for i, x in enumerate(k):
|
727 |
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
728 |
return k
|
729 |
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
# r = wh[:, None] / k[None]
|
738 |
-
# x = torch.max(r, 1. / r).max(2)[0]
|
739 |
-
# m = x.min(1)[0]
|
740 |
-
# return 1. / (m * (m < 5).float()).mean() # product
|
741 |
|
742 |
# Get label wh
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
747 |
-
nr = 1 if img_size[0] == img_size[1] else 3 # number augmentation repetitions
|
748 |
-
for s, l in zip(dataset.shapes, dataset.labels):
|
749 |
-
# wh.append(l[:, 3:5] * (s / s.max())) # image normalized to letterbox normalized wh
|
750 |
-
wh.append(l[:, 3:5] * s) # image normalized to pixels
|
751 |
-
wh = np.concatenate(wh, 0).repeat(nr, axis=0) # augment 3x
|
752 |
-
# wh *= np.random.uniform(img_size[0], img_size[1], size=(wh.shape[0], 1)) # normalized to pixels (multi-scale)
|
753 |
-
wh = wh[(wh > 2.0).all(1)] # remove below threshold boxes (< 2 pixels wh)
|
754 |
|
755 |
# Kmeans calculation
|
756 |
from scipy.cluster.vq import kmeans
|
@@ -758,10 +752,10 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=(640, 640), thr=0.20
|
|
758 |
s = wh.std(0) # sigmas for whitening
|
759 |
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
760 |
k *= s
|
761 |
-
wh = torch.
|
762 |
k = print_results(k)
|
763 |
|
764 |
-
#
|
765 |
# k, d = [None] * 20, [None] * 20
|
766 |
# for i in tqdm(range(1, 21)):
|
767 |
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
@@ -777,7 +771,7 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=(640, 640), thr=0.20
|
|
777 |
# Evolve
|
778 |
npr = np.random
|
779 |
f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
780 |
-
for _ in tqdm(range(gen), desc='Evolving anchors'):
|
781 |
v = np.ones(sh)
|
782 |
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
783 |
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
@@ -785,7 +779,8 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=(640, 640), thr=0.20
|
|
785 |
fg = fitness(kg)
|
786 |
if fg > f:
|
787 |
f, k = fg, kg.copy()
|
788 |
-
|
|
|
789 |
k = print_results(k)
|
790 |
return k
|
791 |
|
|
|
53 |
|
54 |
|
55 |
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
56 |
+
# Check anchor fit to data, recompute if necessary
|
57 |
+
print('\nAnalyzing anchors... ', end='')
|
58 |
anchors = model.module.model[-1].anchor_grid if hasattr(model, 'module') else model.model[-1].anchor_grid
|
59 |
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
60 |
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh
|
61 |
ratio = wh[:, None] / anchors.view(-1, 2).cpu()[None] # ratio
|
62 |
m = torch.max(ratio, 1. / ratio).max(2)[0] # max ratio
|
63 |
bpr = (m.min(1)[0] < thr).float().mean() # best possible recall
|
64 |
+
# mr = (m < thr).float().mean() # match ratio
|
65 |
+
|
66 |
+
print('Best Possible Recall (BPR) = %.3f' % bpr, end='')
|
67 |
+
if bpr < 0.99: # threshold to recompute
|
68 |
+
print('. Generating new anchors for improved recall, please wait...' % bpr)
|
69 |
+
new_anchors = kmean_anchors(dataset, n=9, img_size=640, thr=4.0, gen=1000, verbose=False)
|
70 |
+
anchors[:] = torch.tensor(new_anchors).view_as(anchors).type_as(anchors)
|
71 |
+
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.')
|
72 |
+
print('') # newline
|
73 |
|
74 |
|
75 |
def check_file(file):
|
|
|
694 |
shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images
|
695 |
|
696 |
|
697 |
+
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
698 |
""" Creates kmeans-evolved anchors from training dataset
|
699 |
|
700 |
Arguments:
|
701 |
+
path: path to dataset *.yaml, or a loaded dataset
|
702 |
n: number of anchors
|
703 |
+
img_size: image size used for training
|
704 |
+
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
705 |
gen: generations to evolve anchors using genetic algorithm
|
706 |
|
707 |
Return:
|
|
|
710 |
Usage:
|
711 |
from utils.utils import *; _ = kmean_anchors()
|
712 |
"""
|
713 |
+
thr = 1. / thr
|
714 |
+
|
715 |
+
def metric(k): # compute metrics
|
716 |
+
r = wh[:, None] / k[None]
|
717 |
+
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
718 |
+
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
719 |
+
return x, x.max(1)[0] # x, best_x
|
720 |
|
721 |
+
def fitness(k): # mutation fitness
|
722 |
+
_, best = metric(k)
|
723 |
+
return (best * (best > thr).float()).mean() # fitness
|
724 |
|
725 |
def print_results(k):
|
726 |
k = k[np.argsort(k.prod(1))] # sort small to large
|
727 |
+
x, best = metric(k)
|
728 |
+
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
729 |
+
print('thr=%.2f: %.3f best possible recall, %.2f anchors past thr' % (thr, bpr, aat))
|
730 |
+
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' %
|
731 |
+
(n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
732 |
for i, x in enumerate(k):
|
733 |
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
734 |
return k
|
735 |
|
736 |
+
if isinstance(path, str): # *.yaml file
|
737 |
+
with open(path) as f:
|
738 |
+
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
739 |
+
from utils.datasets import LoadImagesAndLabels
|
740 |
+
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
741 |
+
else:
|
742 |
+
dataset = path # dataset
|
|
|
|
|
|
|
|
|
743 |
|
744 |
# Get label wh
|
745 |
+
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
746 |
+
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh
|
747 |
+
wh = wh[(wh > 2.0).all(1)].numpy() # filter > 2 pixels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
748 |
|
749 |
# Kmeans calculation
|
750 |
from scipy.cluster.vq import kmeans
|
|
|
752 |
s = wh.std(0) # sigmas for whitening
|
753 |
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
754 |
k *= s
|
755 |
+
wh = torch.tensor(wh)
|
756 |
k = print_results(k)
|
757 |
|
758 |
+
# Plot
|
759 |
# k, d = [None] * 20, [None] * 20
|
760 |
# for i in tqdm(range(1, 21)):
|
761 |
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
|
|
771 |
# Evolve
|
772 |
npr = np.random
|
773 |
f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
774 |
+
for _ in tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm:'):
|
775 |
v = np.ones(sh)
|
776 |
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
777 |
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
|
|
779 |
fg = fitness(kg)
|
780 |
if fg > f:
|
781 |
f, k = fg, kg.copy()
|
782 |
+
if verbose:
|
783 |
+
print_results(k)
|
784 |
k = print_results(k)
|
785 |
return k
|
786 |
|