Ayush Chaurasia commited on
Commit
63a1971
·
unverified ·
1 Parent(s): 0ad6301

Improve docstrings and run names (#4174)

Browse files
utils/loggers/__init__.py CHANGED
@@ -57,7 +57,7 @@ class Loggers():
57
  assert 'wandb' in self.include and wandb
58
  run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume else None
59
  self.opt.hyp = self.hyp # add hyperparameters
60
- self.wandb = WandbLogger(self.opt, s.stem, run_id, self.data_dict)
61
  except:
62
  self.wandb = None
63
 
 
57
  assert 'wandb' in self.include and wandb
58
  run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume else None
59
  self.opt.hyp = self.hyp # add hyperparameters
60
+ self.wandb = WandbLogger(self.opt, run_id, self.data_dict)
61
  except:
62
  self.wandb = None
63
 
utils/loggers/wandb/wandb_utils.py CHANGED
@@ -99,7 +99,19 @@ class WandbLogger():
99
  https://docs.wandb.com/guides/integrations/yolov5
100
  """
101
 
102
- def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
 
 
 
 
 
 
 
 
 
 
 
 
103
  # Pre-training routine --
104
  self.job_type = job_type
105
  self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
@@ -129,7 +141,7 @@ class WandbLogger():
129
  resume="allow",
130
  project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
131
  entity=opt.entity,
132
- name=name,
133
  job_type=job_type,
134
  id=run_id,
135
  allow_val_change=True) if not wandb.run else wandb.run
@@ -145,6 +157,15 @@ class WandbLogger():
145
  self.data_dict = self.check_and_upload_dataset(opt)
146
 
147
  def check_and_upload_dataset(self, opt):
 
 
 
 
 
 
 
 
 
148
  assert wandb, 'Install wandb to upload dataset'
149
  config_path = self.log_dataset_artifact(check_file(opt.data),
150
  opt.single_cls,
@@ -155,6 +176,19 @@ class WandbLogger():
155
  return wandb_data_dict
156
 
157
  def setup_training(self, opt, data_dict):
 
 
 
 
 
 
 
 
 
 
 
 
 
158
  self.log_dict, self.current_epoch = {}, 0
159
  self.bbox_interval = opt.bbox_interval
160
  if isinstance(opt.resume, str):
@@ -185,12 +219,22 @@ class WandbLogger():
185
  self.val_table = self.val_artifact.get("val")
186
  if self.val_table_path_map is None:
187
  self.map_val_table_path()
188
- wandb.log({"validation dataset": self.val_table})
189
  if opt.bbox_interval == -1:
190
  self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
191
  return data_dict
192
 
193
  def download_dataset_artifact(self, path, alias):
 
 
 
 
 
 
 
 
 
 
 
194
  if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
195
  artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
196
  dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
@@ -200,6 +244,12 @@ class WandbLogger():
200
  return None, None
201
 
202
  def download_model_artifact(self, opt):
 
 
 
 
 
 
203
  if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
204
  model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
205
  assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
@@ -212,6 +262,16 @@ class WandbLogger():
212
  return None, None
213
 
214
  def log_model(self, path, opt, epoch, fitness_score, best_model=False):
 
 
 
 
 
 
 
 
 
 
215
  model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
216
  'original_url': str(path),
217
  'epochs_trained': epoch + 1,
@@ -226,6 +286,19 @@ class WandbLogger():
226
  print("Saving model artifact on epoch ", epoch + 1)
227
 
228
  def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
 
 
 
 
 
 
 
 
 
 
 
 
 
229
  with open(data_file, encoding='ascii', errors='ignore') as f:
230
  data = yaml.safe_load(f) # data dict
231
  check_dataset(data)
@@ -257,12 +330,27 @@ class WandbLogger():
257
  return path
258
 
259
  def map_val_table_path(self):
 
 
 
 
260
  self.val_table_path_map = {}
261
  print("Mapping dataset")
262
  for i, data in enumerate(tqdm(self.val_table.data)):
263
  self.val_table_path_map[data[3]] = data[0]
264
 
265
  def create_dataset_table(self, dataset, class_to_id, name='dataset'):
 
 
 
 
 
 
 
 
 
 
 
266
  # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
267
  artifact = wandb.Artifact(name=name, type="dataset")
268
  img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
@@ -294,6 +382,14 @@ class WandbLogger():
294
  return artifact
295
 
296
  def log_training_progress(self, predn, path, names):
 
 
 
 
 
 
 
 
297
  class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
298
  box_data = []
299
  total_conf = 0
@@ -316,25 +412,45 @@ class WandbLogger():
316
  )
317
 
318
  def val_one_image(self, pred, predn, path, names, im):
 
 
 
 
 
 
 
 
319
  if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
320
  self.log_training_progress(predn, path, names)
321
- else: # Default to bbox media panelif Val artifact not found
322
- if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
323
- if self.current_epoch % self.bbox_interval == 0:
324
- box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
325
- "class_id": int(cls),
326
- "box_caption": "%s %.3f" % (names[cls], conf),
327
- "scores": {"class_score": conf},
328
- "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
329
- boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
330
- self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
331
 
332
  def log(self, log_dict):
 
 
 
 
 
 
333
  if self.wandb_run:
334
  for key, value in log_dict.items():
335
  self.log_dict[key] = value
336
 
337
  def end_epoch(self, best_result=False):
 
 
 
 
 
 
338
  if self.wandb_run:
339
  with all_logging_disabled():
340
  if self.bbox_media_panel_images:
@@ -352,6 +468,9 @@ class WandbLogger():
352
  self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
353
 
354
  def finish_run(self):
 
 
 
355
  if self.wandb_run:
356
  if self.log_dict:
357
  with all_logging_disabled():
 
99
  https://docs.wandb.com/guides/integrations/yolov5
100
  """
101
 
102
+ def __init__(self, opt, run_id, data_dict, job_type='Training'):
103
+ '''
104
+ - Initialize WandbLogger instance
105
+ - Upload dataset if opt.upload_dataset is True
106
+ - Setup trainig processes if job_type is 'Training'
107
+
108
+ arguments:
109
+ opt (namespace) -- Commandline arguments for this run
110
+ run_id (str) -- Run ID of W&B run to be resumed
111
+ data_dict (Dict) -- Dictionary conataining info about the dataset to be used
112
+ job_type (str) -- To set the job_type for this run
113
+
114
+ '''
115
  # Pre-training routine --
116
  self.job_type = job_type
117
  self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
 
141
  resume="allow",
142
  project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
143
  entity=opt.entity,
144
+ name=opt.name if opt.name != 'exp' else None,
145
  job_type=job_type,
146
  id=run_id,
147
  allow_val_change=True) if not wandb.run else wandb.run
 
157
  self.data_dict = self.check_and_upload_dataset(opt)
158
 
159
  def check_and_upload_dataset(self, opt):
160
+ '''
161
+ Check if the dataset format is compatible and upload it as W&B artifact
162
+
163
+ arguments:
164
+ opt (namespace)-- Commandline arguments for current run
165
+
166
+ returns:
167
+ Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
168
+ '''
169
  assert wandb, 'Install wandb to upload dataset'
170
  config_path = self.log_dataset_artifact(check_file(opt.data),
171
  opt.single_cls,
 
176
  return wandb_data_dict
177
 
178
  def setup_training(self, opt, data_dict):
179
+ '''
180
+ Setup the necessary processes for training YOLO models:
181
+ - Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
182
+ - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
183
+ - Setup log_dict, initialize bbox_interval
184
+
185
+ arguments:
186
+ opt (namespace) -- commandline arguments for this run
187
+ data_dict (Dict) -- Dataset dictionary for this run
188
+
189
+ returns:
190
+ data_dict (Dict) -- contains the updated info about the dataset to be used for training
191
+ '''
192
  self.log_dict, self.current_epoch = {}, 0
193
  self.bbox_interval = opt.bbox_interval
194
  if isinstance(opt.resume, str):
 
219
  self.val_table = self.val_artifact.get("val")
220
  if self.val_table_path_map is None:
221
  self.map_val_table_path()
 
222
  if opt.bbox_interval == -1:
223
  self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
224
  return data_dict
225
 
226
  def download_dataset_artifact(self, path, alias):
227
+ '''
228
+ download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
229
+
230
+ arguments:
231
+ path -- path of the dataset to be used for training
232
+ alias (str)-- alias of the artifact to be download/used for training
233
+
234
+ returns:
235
+ (str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
236
+ is found otherwise returns (None, None)
237
+ '''
238
  if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
239
  artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
240
  dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
 
244
  return None, None
245
 
246
  def download_model_artifact(self, opt):
247
+ '''
248
+ download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
249
+
250
+ arguments:
251
+ opt (namespace) -- Commandline arguments for this run
252
+ '''
253
  if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
254
  model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
255
  assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
 
262
  return None, None
263
 
264
  def log_model(self, path, opt, epoch, fitness_score, best_model=False):
265
+ '''
266
+ Log the model checkpoint as W&B artifact
267
+
268
+ arguments:
269
+ path (Path) -- Path of directory containing the checkpoints
270
+ opt (namespace) -- Command line arguments for this run
271
+ epoch (int) -- Current epoch number
272
+ fitness_score (float) -- fitness score for current epoch
273
+ best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
274
+ '''
275
  model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
276
  'original_url': str(path),
277
  'epochs_trained': epoch + 1,
 
286
  print("Saving model artifact on epoch ", epoch + 1)
287
 
288
  def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
289
+ '''
290
+ Log the dataset as W&B artifact and return the new data file with W&B links
291
+
292
+ arguments:
293
+ data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
294
+ single_class (boolean) -- train multi-class data as single-class
295
+ project (str) -- project name. Used to construct the artifact path
296
+ overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
297
+ file with _wandb postfix. Eg -> data_wandb.yaml
298
+
299
+ returns:
300
+ the new .yaml file with artifact links. it can be used to start training directly from artifacts
301
+ '''
302
  with open(data_file, encoding='ascii', errors='ignore') as f:
303
  data = yaml.safe_load(f) # data dict
304
  check_dataset(data)
 
330
  return path
331
 
332
  def map_val_table_path(self):
333
+ '''
334
+ Map the validation dataset Table like name of file -> it's id in the W&B Table.
335
+ Useful for - referencing artifacts for evaluation.
336
+ '''
337
  self.val_table_path_map = {}
338
  print("Mapping dataset")
339
  for i, data in enumerate(tqdm(self.val_table.data)):
340
  self.val_table_path_map[data[3]] = data[0]
341
 
342
  def create_dataset_table(self, dataset, class_to_id, name='dataset'):
343
+ '''
344
+ Create and return W&B artifact containing W&B Table of the dataset.
345
+
346
+ arguments:
347
+ dataset (LoadImagesAndLabels) -- instance of LoadImagesAndLabels class used to iterate over the data to build Table
348
+ class_to_id (dict(int, str)) -- hash map that maps class ids to labels
349
+ name (str) -- name of the artifact
350
+
351
+ returns:
352
+ dataset artifact to be logged or used
353
+ '''
354
  # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
355
  artifact = wandb.Artifact(name=name, type="dataset")
356
  img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
 
382
  return artifact
383
 
384
  def log_training_progress(self, predn, path, names):
385
+ '''
386
+ Build evaluation Table. Uses reference from validation dataset table.
387
+
388
+ arguments:
389
+ predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
390
+ path (str): local path of the current evaluation image
391
+ names (dict(int, str)): hash map that maps class ids to labels
392
+ '''
393
  class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
394
  box_data = []
395
  total_conf = 0
 
412
  )
413
 
414
  def val_one_image(self, pred, predn, path, names, im):
415
+ '''
416
+ Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
417
+
418
+ arguments:
419
+ pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
420
+ predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
421
+ path (str): local path of the current evaluation image
422
+ '''
423
  if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
424
  self.log_training_progress(predn, path, names)
425
+
426
+ if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
427
+ if self.current_epoch % self.bbox_interval == 0:
428
+ box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
429
+ "class_id": int(cls),
430
+ "box_caption": "%s %.3f" % (names[cls], conf),
431
+ "scores": {"class_score": conf},
432
+ "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
433
+ boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
434
+ self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
435
 
436
  def log(self, log_dict):
437
+ '''
438
+ save the metrics to the logging dictionary
439
+
440
+ arguments:
441
+ log_dict (Dict) -- metrics/media to be logged in current step
442
+ '''
443
  if self.wandb_run:
444
  for key, value in log_dict.items():
445
  self.log_dict[key] = value
446
 
447
  def end_epoch(self, best_result=False):
448
+ '''
449
+ commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
450
+
451
+ arguments:
452
+ best_result (boolean): Boolean representing if the result of this evaluation is best or not
453
+ '''
454
  if self.wandb_run:
455
  with all_logging_disabled():
456
  if self.bbox_media_panel_images:
 
468
  self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
469
 
470
  def finish_run(self):
471
+ '''
472
+ Log metrics if any and finish the current W&B run
473
+ '''
474
  if self.wandb_run:
475
  if self.log_dict:
476
  with all_logging_disabled():