Commit
Β·
6b718e9
1
Parent(s):
54d6516
Created using Colaboratory
Browse files- tutorial.ipynb +80 -84
tutorial.ipynb
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
"accelerator": "GPU",
|
17 |
"widgets": {
|
18 |
"application/vnd.jupyter.widget-state+json": {
|
19 |
-
"
|
20 |
"model_module": "@jupyter-widgets/controls",
|
21 |
"model_name": "HBoxModel",
|
22 |
"state": {
|
@@ -28,15 +28,15 @@
|
|
28 |
"_view_count": null,
|
29 |
"_view_module_version": "1.5.0",
|
30 |
"box_style": "",
|
31 |
-
"layout": "
|
32 |
"_model_module": "@jupyter-widgets/controls",
|
33 |
"children": [
|
34 |
-
"
|
35 |
-
"
|
36 |
]
|
37 |
}
|
38 |
},
|
39 |
-
"
|
40 |
"model_module": "@jupyter-widgets/base",
|
41 |
"model_name": "LayoutModel",
|
42 |
"state": {
|
@@ -87,12 +87,12 @@
|
|
87 |
"left": null
|
88 |
}
|
89 |
},
|
90 |
-
"
|
91 |
"model_module": "@jupyter-widgets/controls",
|
92 |
"model_name": "FloatProgressModel",
|
93 |
"state": {
|
94 |
"_view_name": "ProgressView",
|
95 |
-
"style": "
|
96 |
"_dom_classes": [],
|
97 |
"description": "100%",
|
98 |
"_model_name": "FloatProgressModel",
|
@@ -107,30 +107,30 @@
|
|
107 |
"min": 0,
|
108 |
"description_tooltip": null,
|
109 |
"_model_module": "@jupyter-widgets/controls",
|
110 |
-
"layout": "
|
111 |
}
|
112 |
},
|
113 |
-
"
|
114 |
"model_module": "@jupyter-widgets/controls",
|
115 |
"model_name": "HTMLModel",
|
116 |
"state": {
|
117 |
"_view_name": "HTMLView",
|
118 |
-
"style": "
|
119 |
"_dom_classes": [],
|
120 |
"description": "",
|
121 |
"_model_name": "HTMLModel",
|
122 |
"placeholder": "β",
|
123 |
"_view_module": "@jupyter-widgets/controls",
|
124 |
"_model_module_version": "1.5.0",
|
125 |
-
"value": " 781M/781M [
|
126 |
"_view_count": null,
|
127 |
"_view_module_version": "1.5.0",
|
128 |
"description_tooltip": null,
|
129 |
"_model_module": "@jupyter-widgets/controls",
|
130 |
-
"layout": "
|
131 |
}
|
132 |
},
|
133 |
-
"
|
134 |
"model_module": "@jupyter-widgets/controls",
|
135 |
"model_name": "ProgressStyleModel",
|
136 |
"state": {
|
@@ -145,7 +145,7 @@
|
|
145 |
"_model_module": "@jupyter-widgets/controls"
|
146 |
}
|
147 |
},
|
148 |
-
"
|
149 |
"model_module": "@jupyter-widgets/base",
|
150 |
"model_name": "LayoutModel",
|
151 |
"state": {
|
@@ -196,7 +196,7 @@
|
|
196 |
"left": null
|
197 |
}
|
198 |
},
|
199 |
-
"
|
200 |
"model_module": "@jupyter-widgets/controls",
|
201 |
"model_name": "DescriptionStyleModel",
|
202 |
"state": {
|
@@ -210,7 +210,7 @@
|
|
210 |
"_model_module": "@jupyter-widgets/controls"
|
211 |
}
|
212 |
},
|
213 |
-
"
|
214 |
"model_module": "@jupyter-widgets/base",
|
215 |
"model_name": "LayoutModel",
|
216 |
"state": {
|
@@ -550,7 +550,7 @@
|
|
550 |
"colab": {
|
551 |
"base_uri": "https://localhost:8080/"
|
552 |
},
|
553 |
-
"outputId": "
|
554 |
},
|
555 |
"source": [
|
556 |
"!git clone https://github.com/ultralytics/yolov5 # clone repo\n",
|
@@ -563,12 +563,12 @@
|
|
563 |
"clear_output()\n",
|
564 |
"print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))"
|
565 |
],
|
566 |
-
"execution_count":
|
567 |
"outputs": [
|
568 |
{
|
569 |
"output_type": "stream",
|
570 |
"text": [
|
571 |
-
"Setup complete. Using torch 1.8.
|
572 |
],
|
573 |
"name": "stdout"
|
574 |
}
|
@@ -607,7 +607,7 @@
|
|
607 |
"output_type": "stream",
|
608 |
"text": [
|
609 |
"Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])\n",
|
610 |
-
"YOLOv5 π
|
611 |
"\n",
|
612 |
"Fusing layers... \n",
|
613 |
"Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPS\n",
|
@@ -664,30 +664,30 @@
|
|
664 |
"base_uri": "https://localhost:8080/",
|
665 |
"height": 65,
|
666 |
"referenced_widgets": [
|
667 |
-
"
|
668 |
-
"
|
669 |
-
"
|
670 |
-
"
|
671 |
-
"
|
672 |
-
"
|
673 |
-
"
|
674 |
-
"
|
675 |
]
|
676 |
},
|
677 |
-
"outputId": "
|
678 |
},
|
679 |
"source": [
|
680 |
"# Download COCO val2017\n",
|
681 |
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
|
682 |
"!unzip -q tmp.zip -d ../ && rm tmp.zip"
|
683 |
],
|
684 |
-
"execution_count":
|
685 |
"outputs": [
|
686 |
{
|
687 |
"output_type": "display_data",
|
688 |
"data": {
|
689 |
"application/vnd.jupyter.widget-view+json": {
|
690 |
-
"model_id": "
|
691 |
"version_minor": 0,
|
692 |
"version_major": 2
|
693 |
},
|
@@ -715,57 +715,57 @@
|
|
715 |
"colab": {
|
716 |
"base_uri": "https://localhost:8080/"
|
717 |
},
|
718 |
-
"outputId": "
|
719 |
},
|
720 |
"source": [
|
721 |
"# Run YOLOv5x on COCO val2017\n",
|
722 |
"!python test.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65"
|
723 |
],
|
724 |
-
"execution_count":
|
725 |
"outputs": [
|
726 |
{
|
727 |
"output_type": "stream",
|
728 |
"text": [
|
729 |
"Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', exist_ok=False, img_size=640, iou_thres=0.65, name='exp', project='runs/test', save_conf=False, save_hybrid=False, save_json=True, save_txt=False, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt'])\n",
|
730 |
-
"YOLOv5 π
|
731 |
"\n",
|
732 |
-
"Downloading https://github.com/ultralytics/yolov5/releases/download/
|
733 |
-
"100% 168M/168M [00:
|
734 |
"\n",
|
735 |
"Fusing layers... \n",
|
736 |
"Model Summary: 476 layers, 87730285 parameters, 0 gradients, 218.8 GFLOPS\n",
|
737 |
-
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco/val2017'
|
738 |
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../coco/val2017.cache\n",
|
739 |
-
" Class Images Labels P R [email protected] [email protected]:.95: 100% 157/157 [01:
|
740 |
-
" all 5000 36335 0.
|
741 |
-
"Speed: 5.3/1.
|
742 |
"\n",
|
743 |
"Evaluating pycocotools mAP... saving runs/test/exp/yolov5x_predictions.json...\n",
|
744 |
"loading annotations into memory...\n",
|
745 |
-
"Done (t=0.
|
746 |
"creating index...\n",
|
747 |
"index created!\n",
|
748 |
"Loading and preparing results...\n",
|
749 |
-
"DONE (t=5.
|
750 |
"creating index...\n",
|
751 |
"index created!\n",
|
752 |
"Running per image evaluation...\n",
|
753 |
"Evaluate annotation type *bbox*\n",
|
754 |
-
"DONE (t=
|
755 |
"Accumulating evaluation results...\n",
|
756 |
-
"DONE (t=
|
757 |
-
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
758 |
-
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.
|
759 |
-
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.
|
760 |
-
" Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.
|
761 |
-
" Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.
|
762 |
-
" Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.
|
763 |
-
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.
|
764 |
-
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.
|
765 |
-
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
766 |
-
" Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.
|
767 |
-
" Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.
|
768 |
-
" Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.
|
769 |
"Results saved to runs/test/exp\n"
|
770 |
],
|
771 |
"name": "stdout"
|
@@ -916,28 +916,25 @@
|
|
916 |
"colab": {
|
917 |
"base_uri": "https://localhost:8080/"
|
918 |
},
|
919 |
-
"outputId": "
|
920 |
},
|
921 |
"source": [
|
922 |
"# Train YOLOv5s on COCO128 for 3 epochs\n",
|
923 |
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --nosave --cache"
|
924 |
],
|
925 |
-
"execution_count":
|
926 |
"outputs": [
|
927 |
{
|
928 |
"output_type": "stream",
|
929 |
"text": [
|
930 |
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 β
\n",
|
931 |
-
"YOLOv5 π
|
932 |
"\n",
|
933 |
-
"Namespace(adam=False, batch_size=16, bucket='', cache_images=True, cfg='', data='./data/coco128.yaml', device='', entity=None, epochs=3, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], linear_lr=False, local_rank=-1,
|
934 |
-
"\u001b[34m\u001b[
|
935 |
-
"
|
936 |
-
"2021-03-14 04:18:58.124672: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0\n",
|
937 |
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0\n",
|
938 |
-
"
|
939 |
-
"100% 14.1M/14.1M [00:00<00:00, 63.1MB/s]\n",
|
940 |
-
"\n",
|
941 |
"\n",
|
942 |
" from n params module arguments \n",
|
943 |
" 0 -1 1 3520 models.common.Focus [3, 32, 3] \n",
|
@@ -970,11 +967,10 @@
|
|
970 |
"Transferred 362/362 items from yolov5s.pt\n",
|
971 |
"Scaled weight_decay = 0.0005\n",
|
972 |
"Optimizer groups: 62 .bias, 62 conv.weight, 59 other\n",
|
973 |
-
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../coco128/labels/train2017'
|
974 |
-
"\u001b[34m\u001b[1mtrain: \u001b[
|
975 |
-
"\u001b[34m\u001b[
|
976 |
-
"\u001b[34m\u001b[1mval: \u001b[
|
977 |
-
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 144.17it/s]\n",
|
978 |
"Plotting labels... \n",
|
979 |
"\n",
|
980 |
"\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n",
|
@@ -984,23 +980,23 @@
|
|
984 |
"Starting training for 3 epochs...\n",
|
985 |
"\n",
|
986 |
" Epoch gpu_mem box obj cls total labels img_size\n",
|
987 |
-
" 0/2 3.29G 0.
|
988 |
-
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:04<00:00, 1.
|
989 |
-
" all 128 929 0.
|
990 |
"\n",
|
991 |
" Epoch gpu_mem box obj cls total labels img_size\n",
|
992 |
-
" 1/2 6.65G 0.
|
993 |
-
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:01<00:00,
|
994 |
-
" all 128 929
|
995 |
"\n",
|
996 |
" Epoch gpu_mem box obj cls total labels img_size\n",
|
997 |
-
" 2/2 6.65G 0.
|
998 |
-
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:
|
999 |
-
" all 128 929 0.
|
1000 |
-
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
|
1001 |
-
"Optimizer stripped from runs/train/exp/weights/best.pt, 14.8MB\n",
|
1002 |
"3 epochs completed in 0.007 hours.\n",
|
1003 |
-
"\n"
|
|
|
|
|
1004 |
],
|
1005 |
"name": "stdout"
|
1006 |
}
|
@@ -1263,4 +1259,4 @@
|
|
1263 |
"outputs": []
|
1264 |
}
|
1265 |
]
|
1266 |
-
}
|
|
|
16 |
"accelerator": "GPU",
|
17 |
"widgets": {
|
18 |
"application/vnd.jupyter.widget-state+json": {
|
19 |
+
"8815626359d84416a2f44a95500580a4": {
|
20 |
"model_module": "@jupyter-widgets/controls",
|
21 |
"model_name": "HBoxModel",
|
22 |
"state": {
|
|
|
28 |
"_view_count": null,
|
29 |
"_view_module_version": "1.5.0",
|
30 |
"box_style": "",
|
31 |
+
"layout": "IPY_MODEL_3b85609c4ce94a74823f2cfe141ce68e",
|
32 |
"_model_module": "@jupyter-widgets/controls",
|
33 |
"children": [
|
34 |
+
"IPY_MODEL_876609753c2946248890344722963d44",
|
35 |
+
"IPY_MODEL_8abfdd8778e44b7ca0d29881cb1ada05"
|
36 |
]
|
37 |
}
|
38 |
},
|
39 |
+
"3b85609c4ce94a74823f2cfe141ce68e": {
|
40 |
"model_module": "@jupyter-widgets/base",
|
41 |
"model_name": "LayoutModel",
|
42 |
"state": {
|
|
|
87 |
"left": null
|
88 |
}
|
89 |
},
|
90 |
+
"876609753c2946248890344722963d44": {
|
91 |
"model_module": "@jupyter-widgets/controls",
|
92 |
"model_name": "FloatProgressModel",
|
93 |
"state": {
|
94 |
"_view_name": "ProgressView",
|
95 |
+
"style": "IPY_MODEL_78c6c3d97c484916b8ee167c63556800",
|
96 |
"_dom_classes": [],
|
97 |
"description": "100%",
|
98 |
"_model_name": "FloatProgressModel",
|
|
|
107 |
"min": 0,
|
108 |
"description_tooltip": null,
|
109 |
"_model_module": "@jupyter-widgets/controls",
|
110 |
+
"layout": "IPY_MODEL_9dd0f182db5d45378ceafb855e486eb8"
|
111 |
}
|
112 |
},
|
113 |
+
"8abfdd8778e44b7ca0d29881cb1ada05": {
|
114 |
"model_module": "@jupyter-widgets/controls",
|
115 |
"model_name": "HTMLModel",
|
116 |
"state": {
|
117 |
"_view_name": "HTMLView",
|
118 |
+
"style": "IPY_MODEL_a3dab28b45c247089a3d1b8b09f327de",
|
119 |
"_dom_classes": [],
|
120 |
"description": "",
|
121 |
"_model_name": "HTMLModel",
|
122 |
"placeholder": "β",
|
123 |
"_view_module": "@jupyter-widgets/controls",
|
124 |
"_model_module_version": "1.5.0",
|
125 |
+
"value": " 781M/781M [08:43<00:00, 1.56MB/s]",
|
126 |
"_view_count": null,
|
127 |
"_view_module_version": "1.5.0",
|
128 |
"description_tooltip": null,
|
129 |
"_model_module": "@jupyter-widgets/controls",
|
130 |
+
"layout": "IPY_MODEL_32451332b7a94ba9aacddeaa6ac94d50"
|
131 |
}
|
132 |
},
|
133 |
+
"78c6c3d97c484916b8ee167c63556800": {
|
134 |
"model_module": "@jupyter-widgets/controls",
|
135 |
"model_name": "ProgressStyleModel",
|
136 |
"state": {
|
|
|
145 |
"_model_module": "@jupyter-widgets/controls"
|
146 |
}
|
147 |
},
|
148 |
+
"9dd0f182db5d45378ceafb855e486eb8": {
|
149 |
"model_module": "@jupyter-widgets/base",
|
150 |
"model_name": "LayoutModel",
|
151 |
"state": {
|
|
|
196 |
"left": null
|
197 |
}
|
198 |
},
|
199 |
+
"a3dab28b45c247089a3d1b8b09f327de": {
|
200 |
"model_module": "@jupyter-widgets/controls",
|
201 |
"model_name": "DescriptionStyleModel",
|
202 |
"state": {
|
|
|
210 |
"_model_module": "@jupyter-widgets/controls"
|
211 |
}
|
212 |
},
|
213 |
+
"32451332b7a94ba9aacddeaa6ac94d50": {
|
214 |
"model_module": "@jupyter-widgets/base",
|
215 |
"model_name": "LayoutModel",
|
216 |
"state": {
|
|
|
550 |
"colab": {
|
551 |
"base_uri": "https://localhost:8080/"
|
552 |
},
|
553 |
+
"outputId": "4576b05f-d6d1-404a-fc99-5663c71e3dc4"
|
554 |
},
|
555 |
"source": [
|
556 |
"!git clone https://github.com/ultralytics/yolov5 # clone repo\n",
|
|
|
563 |
"clear_output()\n",
|
564 |
"print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))"
|
565 |
],
|
566 |
+
"execution_count": 1,
|
567 |
"outputs": [
|
568 |
{
|
569 |
"output_type": "stream",
|
570 |
"text": [
|
571 |
+
"Setup complete. Using torch 1.8.1+cu101 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16160MB, multi_processor_count=80)\n"
|
572 |
],
|
573 |
"name": "stdout"
|
574 |
}
|
|
|
607 |
"output_type": "stream",
|
608 |
"text": [
|
609 |
"Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])\n",
|
610 |
+
"YOLOv5 π v4.0-137-g9b11f0c torch 1.8.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
|
611 |
"\n",
|
612 |
"Fusing layers... \n",
|
613 |
"Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPS\n",
|
|
|
664 |
"base_uri": "https://localhost:8080/",
|
665 |
"height": 65,
|
666 |
"referenced_widgets": [
|
667 |
+
"8815626359d84416a2f44a95500580a4",
|
668 |
+
"3b85609c4ce94a74823f2cfe141ce68e",
|
669 |
+
"876609753c2946248890344722963d44",
|
670 |
+
"8abfdd8778e44b7ca0d29881cb1ada05",
|
671 |
+
"78c6c3d97c484916b8ee167c63556800",
|
672 |
+
"9dd0f182db5d45378ceafb855e486eb8",
|
673 |
+
"a3dab28b45c247089a3d1b8b09f327de",
|
674 |
+
"32451332b7a94ba9aacddeaa6ac94d50"
|
675 |
]
|
676 |
},
|
677 |
+
"outputId": "81521192-cf67-4a47-a4cc-434cb0ebc363"
|
678 |
},
|
679 |
"source": [
|
680 |
"# Download COCO val2017\n",
|
681 |
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
|
682 |
"!unzip -q tmp.zip -d ../ && rm tmp.zip"
|
683 |
],
|
684 |
+
"execution_count": 2,
|
685 |
"outputs": [
|
686 |
{
|
687 |
"output_type": "display_data",
|
688 |
"data": {
|
689 |
"application/vnd.jupyter.widget-view+json": {
|
690 |
+
"model_id": "8815626359d84416a2f44a95500580a4",
|
691 |
"version_minor": 0,
|
692 |
"version_major": 2
|
693 |
},
|
|
|
715 |
"colab": {
|
716 |
"base_uri": "https://localhost:8080/"
|
717 |
},
|
718 |
+
"outputId": "2340b131-9943-4cd6-fd3a-8272aeb0774f"
|
719 |
},
|
720 |
"source": [
|
721 |
"# Run YOLOv5x on COCO val2017\n",
|
722 |
"!python test.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65"
|
723 |
],
|
724 |
+
"execution_count": 6,
|
725 |
"outputs": [
|
726 |
{
|
727 |
"output_type": "stream",
|
728 |
"text": [
|
729 |
"Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', exist_ok=False, img_size=640, iou_thres=0.65, name='exp', project='runs/test', save_conf=False, save_hybrid=False, save_json=True, save_txt=False, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt'])\n",
|
730 |
+
"YOLOv5 π v5.0-1-g0f395b3 torch 1.8.1+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
|
731 |
"\n",
|
732 |
+
"Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5x.pt to yolov5x.pt...\n",
|
733 |
+
"100% 168M/168M [00:05<00:00, 32.3MB/s]\n",
|
734 |
"\n",
|
735 |
"Fusing layers... \n",
|
736 |
"Model Summary: 476 layers, 87730285 parameters, 0 gradients, 218.8 GFLOPS\n",
|
737 |
+
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco/val2017' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 3102.29it/s]\n",
|
738 |
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../coco/val2017.cache\n",
|
739 |
+
" Class Images Labels P R [email protected] [email protected]:.95: 100% 157/157 [01:23<00:00, 1.87it/s]\n",
|
740 |
+
" all 5000 36335 0.745 0.627 0.68 0.49\n",
|
741 |
+
"Speed: 5.3/1.6/6.9 ms inference/NMS/total per 640x640 image at batch-size 32\n",
|
742 |
"\n",
|
743 |
"Evaluating pycocotools mAP... saving runs/test/exp/yolov5x_predictions.json...\n",
|
744 |
"loading annotations into memory...\n",
|
745 |
+
"Done (t=0.48s)\n",
|
746 |
"creating index...\n",
|
747 |
"index created!\n",
|
748 |
"Loading and preparing results...\n",
|
749 |
+
"DONE (t=5.08s)\n",
|
750 |
"creating index...\n",
|
751 |
"index created!\n",
|
752 |
"Running per image evaluation...\n",
|
753 |
"Evaluate annotation type *bbox*\n",
|
754 |
+
"DONE (t=90.51s).\n",
|
755 |
"Accumulating evaluation results...\n",
|
756 |
+
"DONE (t=15.16s).\n",
|
757 |
+
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.504\n",
|
758 |
+
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n",
|
759 |
+
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.546\n",
|
760 |
+
" Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.351\n",
|
761 |
+
" Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.551\n",
|
762 |
+
" Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.644\n",
|
763 |
+
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.382\n",
|
764 |
+
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.629\n",
|
765 |
+
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.681\n",
|
766 |
+
" Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524\n",
|
767 |
+
" Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735\n",
|
768 |
+
" Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.827\n",
|
769 |
"Results saved to runs/test/exp\n"
|
770 |
],
|
771 |
"name": "stdout"
|
|
|
916 |
"colab": {
|
917 |
"base_uri": "https://localhost:8080/"
|
918 |
},
|
919 |
+
"outputId": "e715d09c-5d93-4912-a0df-9da0893f2014"
|
920 |
},
|
921 |
"source": [
|
922 |
"# Train YOLOv5s on COCO128 for 3 epochs\n",
|
923 |
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --nosave --cache"
|
924 |
],
|
925 |
+
"execution_count": 12,
|
926 |
"outputs": [
|
927 |
{
|
928 |
"output_type": "stream",
|
929 |
"text": [
|
930 |
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 β
\n",
|
931 |
+
"YOLOv5 π v5.0-2-g54d6516 torch 1.8.1+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
|
932 |
"\n",
|
933 |
+
"Namespace(adam=False, artifact_alias='latest', batch_size=16, bbox_interval=-1, bucket='', cache_images=True, cfg='', data='./data/coco128.yaml', device='', entity=None, epochs=3, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], label_smoothing=0.0, linear_lr=False, local_rank=-1, multi_scale=False, name='exp', noautoanchor=False, nosave=True, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs/train/exp', save_period=-1, single_cls=False, sync_bn=False, total_batch_size=16, upload_dataset=False, weights='yolov5s.pt', workers=8, world_size=1)\n",
|
934 |
+
"\u001b[34m\u001b[1mtensorboard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
|
935 |
+
"2021-04-12 10:29:58.539457: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0\n",
|
|
|
936 |
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0\n",
|
937 |
+
"\u001b[34m\u001b[1mwandb: \u001b[0mInstall Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)\n",
|
|
|
|
|
938 |
"\n",
|
939 |
" from n params module arguments \n",
|
940 |
" 0 -1 1 3520 models.common.Focus [3, 32, 3] \n",
|
|
|
967 |
"Transferred 362/362 items from yolov5s.pt\n",
|
968 |
"Scaled weight_decay = 0.0005\n",
|
969 |
"Optimizer groups: 62 .bias, 62 conv.weight, 59 other\n",
|
970 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 796544.38it/s]\n",
|
971 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 176.73it/s]\n",
|
972 |
+
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 500812.42it/s]\n",
|
973 |
+
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 134.10it/s]\n",
|
|
|
974 |
"Plotting labels... \n",
|
975 |
"\n",
|
976 |
"\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n",
|
|
|
980 |
"Starting training for 3 epochs...\n",
|
981 |
"\n",
|
982 |
" Epoch gpu_mem box obj cls total labels img_size\n",
|
983 |
+
" 0/2 3.29G 0.04368 0.065 0.02127 0.1299 183 640: 100% 8/8 [00:03<00:00, 2.21it/s]\n",
|
984 |
+
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:04<00:00, 1.09s/it]\n",
|
985 |
+
" all 128 929 0.605 0.657 0.666 0.434\n",
|
986 |
"\n",
|
987 |
" Epoch gpu_mem box obj cls total labels img_size\n",
|
988 |
+
" 1/2 6.65G 0.04556 0.0651 0.01987 0.1305 166 640: 100% 8/8 [00:01<00:00, 5.18it/s]\n",
|
989 |
+
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:01<00:00, 2.72it/s]\n",
|
990 |
+
" all 128 929 0.61 0.66 0.669 0.438\n",
|
991 |
"\n",
|
992 |
" Epoch gpu_mem box obj cls total labels img_size\n",
|
993 |
+
" 2/2 6.65G 0.04624 0.06923 0.0196 0.1351 182 640: 100% 8/8 [00:01<00:00, 5.19it/s]\n",
|
994 |
+
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:03<00:00, 1.27it/s]\n",
|
995 |
+
" all 128 929 0.618 0.659 0.671 0.438\n",
|
|
|
|
|
996 |
"3 epochs completed in 0.007 hours.\n",
|
997 |
+
"\n",
|
998 |
+
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
|
999 |
+
"Optimizer stripped from runs/train/exp/weights/best.pt, 14.8MB\n"
|
1000 |
],
|
1001 |
"name": "stdout"
|
1002 |
}
|
|
|
1259 |
"outputs": []
|
1260 |
}
|
1261 |
]
|
1262 |
+
}
|