Commit
Β·
78cf488
1
Parent(s):
c6b51f4
Created using Colaboratory
Browse files- tutorial.ipynb +164 -95
tutorial.ipynb
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
"accelerator": "GPU",
|
17 |
"widgets": {
|
18 |
"application/vnd.jupyter.widget-state+json": {
|
19 |
-
"
|
20 |
"model_module": "@jupyter-widgets/controls",
|
21 |
"model_name": "HBoxModel",
|
22 |
"state": {
|
@@ -28,15 +28,15 @@
|
|
28 |
"_view_count": null,
|
29 |
"_view_module_version": "1.5.0",
|
30 |
"box_style": "",
|
31 |
-
"layout": "
|
32 |
"_model_module": "@jupyter-widgets/controls",
|
33 |
"children": [
|
34 |
-
"
|
35 |
-
"
|
36 |
]
|
37 |
}
|
38 |
},
|
39 |
-
"
|
40 |
"model_module": "@jupyter-widgets/base",
|
41 |
"model_name": "LayoutModel",
|
42 |
"state": {
|
@@ -87,12 +87,12 @@
|
|
87 |
"left": null
|
88 |
}
|
89 |
},
|
90 |
-
"
|
91 |
"model_module": "@jupyter-widgets/controls",
|
92 |
"model_name": "FloatProgressModel",
|
93 |
"state": {
|
94 |
"_view_name": "ProgressView",
|
95 |
-
"style": "
|
96 |
"_dom_classes": [],
|
97 |
"description": "100%",
|
98 |
"_model_name": "FloatProgressModel",
|
@@ -107,30 +107,30 @@
|
|
107 |
"min": 0,
|
108 |
"description_tooltip": null,
|
109 |
"_model_module": "@jupyter-widgets/controls",
|
110 |
-
"layout": "
|
111 |
}
|
112 |
},
|
113 |
-
"
|
114 |
"model_module": "@jupyter-widgets/controls",
|
115 |
"model_name": "HTMLModel",
|
116 |
"state": {
|
117 |
"_view_name": "HTMLView",
|
118 |
-
"style": "
|
119 |
"_dom_classes": [],
|
120 |
"description": "",
|
121 |
"_model_name": "HTMLModel",
|
122 |
"placeholder": "β",
|
123 |
"_view_module": "@jupyter-widgets/controls",
|
124 |
"_model_module_version": "1.5.0",
|
125 |
-
"value": " 781M/781M [
|
126 |
"_view_count": null,
|
127 |
"_view_module_version": "1.5.0",
|
128 |
"description_tooltip": null,
|
129 |
"_model_module": "@jupyter-widgets/controls",
|
130 |
-
"layout": "
|
131 |
}
|
132 |
},
|
133 |
-
"
|
134 |
"model_module": "@jupyter-widgets/controls",
|
135 |
"model_name": "ProgressStyleModel",
|
136 |
"state": {
|
@@ -145,7 +145,7 @@
|
|
145 |
"_model_module": "@jupyter-widgets/controls"
|
146 |
}
|
147 |
},
|
148 |
-
"
|
149 |
"model_module": "@jupyter-widgets/base",
|
150 |
"model_name": "LayoutModel",
|
151 |
"state": {
|
@@ -196,7 +196,7 @@
|
|
196 |
"left": null
|
197 |
}
|
198 |
},
|
199 |
-
"
|
200 |
"model_module": "@jupyter-widgets/controls",
|
201 |
"model_name": "DescriptionStyleModel",
|
202 |
"state": {
|
@@ -210,7 +210,7 @@
|
|
210 |
"_model_module": "@jupyter-widgets/controls"
|
211 |
}
|
212 |
},
|
213 |
-
"
|
214 |
"model_module": "@jupyter-widgets/base",
|
215 |
"model_name": "LayoutModel",
|
216 |
"state": {
|
@@ -261,7 +261,7 @@
|
|
261 |
"left": null
|
262 |
}
|
263 |
},
|
264 |
-
"
|
265 |
"model_module": "@jupyter-widgets/controls",
|
266 |
"model_name": "HBoxModel",
|
267 |
"state": {
|
@@ -273,15 +273,15 @@
|
|
273 |
"_view_count": null,
|
274 |
"_view_module_version": "1.5.0",
|
275 |
"box_style": "",
|
276 |
-
"layout": "
|
277 |
"_model_module": "@jupyter-widgets/controls",
|
278 |
"children": [
|
279 |
-
"
|
280 |
-
"
|
281 |
]
|
282 |
}
|
283 |
},
|
284 |
-
"
|
285 |
"model_module": "@jupyter-widgets/base",
|
286 |
"model_name": "LayoutModel",
|
287 |
"state": {
|
@@ -332,12 +332,12 @@
|
|
332 |
"left": null
|
333 |
}
|
334 |
},
|
335 |
-
"
|
336 |
"model_module": "@jupyter-widgets/controls",
|
337 |
"model_name": "FloatProgressModel",
|
338 |
"state": {
|
339 |
"_view_name": "ProgressView",
|
340 |
-
"style": "
|
341 |
"_dom_classes": [],
|
342 |
"description": "100%",
|
343 |
"_model_name": "FloatProgressModel",
|
@@ -352,30 +352,30 @@
|
|
352 |
"min": 0,
|
353 |
"description_tooltip": null,
|
354 |
"_model_module": "@jupyter-widgets/controls",
|
355 |
-
"layout": "
|
356 |
}
|
357 |
},
|
358 |
-
"
|
359 |
"model_module": "@jupyter-widgets/controls",
|
360 |
"model_name": "HTMLModel",
|
361 |
"state": {
|
362 |
"_view_name": "HTMLView",
|
363 |
-
"style": "
|
364 |
"_dom_classes": [],
|
365 |
"description": "",
|
366 |
"_model_name": "HTMLModel",
|
367 |
"placeholder": "β",
|
368 |
"_view_module": "@jupyter-widgets/controls",
|
369 |
"_model_module_version": "1.5.0",
|
370 |
-
"value": " 21.1M/21.1M [00:
|
371 |
"_view_count": null,
|
372 |
"_view_module_version": "1.5.0",
|
373 |
"description_tooltip": null,
|
374 |
"_model_module": "@jupyter-widgets/controls",
|
375 |
-
"layout": "
|
376 |
}
|
377 |
},
|
378 |
-
"
|
379 |
"model_module": "@jupyter-widgets/controls",
|
380 |
"model_name": "ProgressStyleModel",
|
381 |
"state": {
|
@@ -390,7 +390,7 @@
|
|
390 |
"_model_module": "@jupyter-widgets/controls"
|
391 |
}
|
392 |
},
|
393 |
-
"
|
394 |
"model_module": "@jupyter-widgets/base",
|
395 |
"model_name": "LayoutModel",
|
396 |
"state": {
|
@@ -441,7 +441,7 @@
|
|
441 |
"left": null
|
442 |
}
|
443 |
},
|
444 |
-
"
|
445 |
"model_module": "@jupyter-widgets/controls",
|
446 |
"model_name": "DescriptionStyleModel",
|
447 |
"state": {
|
@@ -455,7 +455,7 @@
|
|
455 |
"_model_module": "@jupyter-widgets/controls"
|
456 |
}
|
457 |
},
|
458 |
-
"
|
459 |
"model_module": "@jupyter-widgets/base",
|
460 |
"model_name": "LayoutModel",
|
461 |
"state": {
|
@@ -517,8 +517,7 @@
|
|
517 |
"colab_type": "text"
|
518 |
},
|
519 |
"source": [
|
520 |
-
"<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
521 |
-
"<a href=\"https://kaggle.com/kernels/welcome?src=https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb\" target=\"_parent\"><img alt=\"Kaggle\" title=\"Open in Kaggle\" src=\"https://kaggle.com/static/images/open-in-kaggle.svg\"></a>"
|
522 |
]
|
523 |
},
|
524 |
{
|
@@ -551,7 +550,7 @@
|
|
551 |
"colab": {
|
552 |
"base_uri": "https://localhost:8080/"
|
553 |
},
|
554 |
-
"outputId": "
|
555 |
},
|
556 |
"source": [
|
557 |
"!git clone https://github.com/ultralytics/yolov5 # clone repo\n",
|
@@ -564,7 +563,7 @@
|
|
564 |
"clear_output()\n",
|
565 |
"print(f\"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})\")"
|
566 |
],
|
567 |
-
"execution_count":
|
568 |
"outputs": [
|
569 |
{
|
570 |
"output_type": "stream",
|
@@ -663,32 +662,32 @@
|
|
663 |
"id": "WQPtK1QYVaD_",
|
664 |
"colab": {
|
665 |
"base_uri": "https://localhost:8080/",
|
666 |
-
"height":
|
667 |
"referenced_widgets": [
|
668 |
-
"
|
669 |
-
"
|
670 |
-
"
|
671 |
-
"
|
672 |
-
"
|
673 |
-
"
|
674 |
-
"
|
675 |
-
"
|
676 |
]
|
677 |
},
|
678 |
-
"outputId": "
|
679 |
},
|
680 |
"source": [
|
681 |
"# Download COCO val2017\n",
|
682 |
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
|
683 |
"!unzip -q tmp.zip -d ../ && rm tmp.zip"
|
684 |
],
|
685 |
-
"execution_count":
|
686 |
"outputs": [
|
687 |
{
|
688 |
"output_type": "display_data",
|
689 |
"data": {
|
690 |
"application/vnd.jupyter.widget-view+json": {
|
691 |
-
"model_id": "
|
692 |
"version_minor": 0,
|
693 |
"version_major": 2
|
694 |
},
|
@@ -716,45 +715,45 @@
|
|
716 |
"colab": {
|
717 |
"base_uri": "https://localhost:8080/"
|
718 |
},
|
719 |
-
"outputId": "
|
720 |
},
|
721 |
"source": [
|
722 |
"# Run YOLOv5x on COCO val2017\n",
|
723 |
-
"!python test.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65"
|
724 |
],
|
725 |
-
"execution_count":
|
726 |
"outputs": [
|
727 |
{
|
728 |
"output_type": "stream",
|
729 |
"text": [
|
730 |
-
"Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', exist_ok=False, img_size=640, iou_thres=0.65, name='exp', project='runs/test', save_conf=False, save_hybrid=False, save_json=True, save_txt=False, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt'])\n",
|
731 |
-
"YOLOv5 π v5.0-
|
732 |
"\n",
|
733 |
"Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5x.pt to yolov5x.pt...\n",
|
734 |
-
"100% 168M/168M [00:
|
735 |
"\n",
|
736 |
"Fusing layers... \n",
|
737 |
-
"Model Summary: 476 layers, 87730285 parameters, 0 gradients
|
738 |
-
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco/val2017' images and labels...
|
739 |
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../coco/val2017.cache\n",
|
740 |
-
" Class
|
741 |
-
" all
|
742 |
-
"Speed: 5.3/1.
|
743 |
"\n",
|
744 |
"Evaluating pycocotools mAP... saving runs/test/exp/yolov5x_predictions.json...\n",
|
745 |
"loading annotations into memory...\n",
|
746 |
-
"Done (t=0.
|
747 |
"creating index...\n",
|
748 |
"index created!\n",
|
749 |
"Loading and preparing results...\n",
|
750 |
-
"DONE (t=
|
751 |
"creating index...\n",
|
752 |
"index created!\n",
|
753 |
"Running per image evaluation...\n",
|
754 |
"Evaluate annotation type *bbox*\n",
|
755 |
-
"DONE (t=
|
756 |
"Accumulating evaluation results...\n",
|
757 |
-
"DONE (t=
|
758 |
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.504\n",
|
759 |
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n",
|
760 |
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.546\n",
|
@@ -827,32 +826,32 @@
|
|
827 |
"id": "Knxi2ncxWffW",
|
828 |
"colab": {
|
829 |
"base_uri": "https://localhost:8080/",
|
830 |
-
"height":
|
831 |
"referenced_widgets": [
|
832 |
-
"
|
833 |
-
"
|
834 |
-
"
|
835 |
-
"
|
836 |
-
"
|
837 |
-
"
|
838 |
-
"
|
839 |
-
"
|
840 |
]
|
841 |
},
|
842 |
-
"outputId": "
|
843 |
},
|
844 |
"source": [
|
845 |
"# Download COCO128\n",
|
846 |
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip')\n",
|
847 |
"!unzip -q tmp.zip -d ../ && rm tmp.zip"
|
848 |
],
|
849 |
-
"execution_count":
|
850 |
"outputs": [
|
851 |
{
|
852 |
"output_type": "display_data",
|
853 |
"data": {
|
854 |
"application/vnd.jupyter.widget-view+json": {
|
855 |
-
"model_id": "
|
856 |
"version_minor": 0,
|
857 |
"version_major": 2
|
858 |
},
|
@@ -918,23 +917,93 @@
|
|
918 |
"colab": {
|
919 |
"base_uri": "https://localhost:8080/"
|
920 |
},
|
921 |
-
"outputId": "
|
922 |
},
|
923 |
"source": [
|
924 |
"# Train YOLOv5s on COCO128 for 3 epochs\n",
|
925 |
-
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --
|
926 |
],
|
927 |
-
"execution_count":
|
928 |
"outputs": [
|
929 |
{
|
930 |
"output_type": "stream",
|
931 |
"text": [
|
932 |
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 β
\n",
|
933 |
-
"YOLOv5 π v5.0-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
934 |
"\n",
|
935 |
-
"Namespace(adam=False, artifact_alias='latest', batch_size=16, bbox_interval=-1, bucket='', cache_images=True, cfg='', data='./data/coco128.yaml', device='', entity=None, epochs=3, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], label_smoothing=0.0, linear_lr=False, local_rank=-1, multi_scale=False, name='exp', noautoanchor=False, nosave=
|
936 |
"\u001b[34m\u001b[1mtensorboard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
|
937 |
-
"2021-
|
938 |
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0\n",
|
939 |
"\u001b[34m\u001b[1mwandb: \u001b[0mInstall Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)\n",
|
940 |
"\n",
|
@@ -969,10 +1038,10 @@
|
|
969 |
"Transferred 362/362 items from yolov5s.pt\n",
|
970 |
"Scaled weight_decay = 0.0005\n",
|
971 |
"Optimizer groups: 62 .bias, 62 conv.weight, 59 other\n",
|
972 |
-
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00,
|
973 |
-
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00,
|
974 |
-
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00,
|
975 |
-
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:
|
976 |
"Plotting labels... \n",
|
977 |
"\n",
|
978 |
"\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n",
|
@@ -982,19 +1051,19 @@
|
|
982 |
"Starting training for 3 epochs...\n",
|
983 |
"\n",
|
984 |
" Epoch gpu_mem box obj cls total labels img_size\n",
|
985 |
-
" 0/2
|
986 |
-
" Class
|
987 |
-
" all
|
988 |
"\n",
|
989 |
" Epoch gpu_mem box obj cls total labels img_size\n",
|
990 |
-
" 1/2
|
991 |
-
" Class
|
992 |
-
" all
|
993 |
"\n",
|
994 |
" Epoch gpu_mem box obj cls total labels img_size\n",
|
995 |
-
" 2/2
|
996 |
-
" Class
|
997 |
-
" all
|
998 |
"3 epochs completed in 0.007 hours.\n",
|
999 |
"\n",
|
1000 |
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
|
@@ -1261,4 +1330,4 @@
|
|
1261 |
"outputs": []
|
1262 |
}
|
1263 |
]
|
1264 |
-
}
|
|
|
16 |
"accelerator": "GPU",
|
17 |
"widgets": {
|
18 |
"application/vnd.jupyter.widget-state+json": {
|
19 |
+
"cef5e9351ca743bcba5febac0b096a30": {
|
20 |
"model_module": "@jupyter-widgets/controls",
|
21 |
"model_name": "HBoxModel",
|
22 |
"state": {
|
|
|
28 |
"_view_count": null,
|
29 |
"_view_module_version": "1.5.0",
|
30 |
"box_style": "",
|
31 |
+
"layout": "IPY_MODEL_ec326c52378f4410920c328f221e0514",
|
32 |
"_model_module": "@jupyter-widgets/controls",
|
33 |
"children": [
|
34 |
+
"IPY_MODEL_83000c64a11c4ae8abd6f0ef2f108cef",
|
35 |
+
"IPY_MODEL_0f7899eb719f4a9c9852426551f97be9"
|
36 |
]
|
37 |
}
|
38 |
},
|
39 |
+
"ec326c52378f4410920c328f221e0514": {
|
40 |
"model_module": "@jupyter-widgets/base",
|
41 |
"model_name": "LayoutModel",
|
42 |
"state": {
|
|
|
87 |
"left": null
|
88 |
}
|
89 |
},
|
90 |
+
"83000c64a11c4ae8abd6f0ef2f108cef": {
|
91 |
"model_module": "@jupyter-widgets/controls",
|
92 |
"model_name": "FloatProgressModel",
|
93 |
"state": {
|
94 |
"_view_name": "ProgressView",
|
95 |
+
"style": "IPY_MODEL_886ac5b18b3c4c82bf15ad5055f1e17e",
|
96 |
"_dom_classes": [],
|
97 |
"description": "100%",
|
98 |
"_model_name": "FloatProgressModel",
|
|
|
107 |
"min": 0,
|
108 |
"description_tooltip": null,
|
109 |
"_model_module": "@jupyter-widgets/controls",
|
110 |
+
"layout": "IPY_MODEL_4e67b3c3a49849c7a7ba28b7eec96e7a"
|
111 |
}
|
112 |
},
|
113 |
+
"0f7899eb719f4a9c9852426551f97be9": {
|
114 |
"model_module": "@jupyter-widgets/controls",
|
115 |
"model_name": "HTMLModel",
|
116 |
"state": {
|
117 |
"_view_name": "HTMLView",
|
118 |
+
"style": "IPY_MODEL_62c3682ff1804571a483d46664533969",
|
119 |
"_dom_classes": [],
|
120 |
"description": "",
|
121 |
"_model_name": "HTMLModel",
|
122 |
"placeholder": "β",
|
123 |
"_view_module": "@jupyter-widgets/controls",
|
124 |
"_model_module_version": "1.5.0",
|
125 |
+
"value": " 781M/781M [00:12<00:00, 67.1MB/s]",
|
126 |
"_view_count": null,
|
127 |
"_view_module_version": "1.5.0",
|
128 |
"description_tooltip": null,
|
129 |
"_model_module": "@jupyter-widgets/controls",
|
130 |
+
"layout": "IPY_MODEL_599dda3b608b432393760b2ca4ae7c7d"
|
131 |
}
|
132 |
},
|
133 |
+
"886ac5b18b3c4c82bf15ad5055f1e17e": {
|
134 |
"model_module": "@jupyter-widgets/controls",
|
135 |
"model_name": "ProgressStyleModel",
|
136 |
"state": {
|
|
|
145 |
"_model_module": "@jupyter-widgets/controls"
|
146 |
}
|
147 |
},
|
148 |
+
"4e67b3c3a49849c7a7ba28b7eec96e7a": {
|
149 |
"model_module": "@jupyter-widgets/base",
|
150 |
"model_name": "LayoutModel",
|
151 |
"state": {
|
|
|
196 |
"left": null
|
197 |
}
|
198 |
},
|
199 |
+
"62c3682ff1804571a483d46664533969": {
|
200 |
"model_module": "@jupyter-widgets/controls",
|
201 |
"model_name": "DescriptionStyleModel",
|
202 |
"state": {
|
|
|
210 |
"_model_module": "@jupyter-widgets/controls"
|
211 |
}
|
212 |
},
|
213 |
+
"599dda3b608b432393760b2ca4ae7c7d": {
|
214 |
"model_module": "@jupyter-widgets/base",
|
215 |
"model_name": "LayoutModel",
|
216 |
"state": {
|
|
|
261 |
"left": null
|
262 |
}
|
263 |
},
|
264 |
+
"217ca488c82a4b7a80318b70887a556e": {
|
265 |
"model_module": "@jupyter-widgets/controls",
|
266 |
"model_name": "HBoxModel",
|
267 |
"state": {
|
|
|
273 |
"_view_count": null,
|
274 |
"_view_module_version": "1.5.0",
|
275 |
"box_style": "",
|
276 |
+
"layout": "IPY_MODEL_4e63af16f1084ca98a6fa5a282f2a81e",
|
277 |
"_model_module": "@jupyter-widgets/controls",
|
278 |
"children": [
|
279 |
+
"IPY_MODEL_49f4b3c7f6ff42b4b9132a8550e12186",
|
280 |
+
"IPY_MODEL_8ec9e1a4883245daaf029458ee09721f"
|
281 |
]
|
282 |
}
|
283 |
},
|
284 |
+
"4e63af16f1084ca98a6fa5a282f2a81e": {
|
285 |
"model_module": "@jupyter-widgets/base",
|
286 |
"model_name": "LayoutModel",
|
287 |
"state": {
|
|
|
332 |
"left": null
|
333 |
}
|
334 |
},
|
335 |
+
"49f4b3c7f6ff42b4b9132a8550e12186": {
|
336 |
"model_module": "@jupyter-widgets/controls",
|
337 |
"model_name": "FloatProgressModel",
|
338 |
"state": {
|
339 |
"_view_name": "ProgressView",
|
340 |
+
"style": "IPY_MODEL_9d3e775ee11e4cf4b587b64fbc3cc6f7",
|
341 |
"_dom_classes": [],
|
342 |
"description": "100%",
|
343 |
"_model_name": "FloatProgressModel",
|
|
|
352 |
"min": 0,
|
353 |
"description_tooltip": null,
|
354 |
"_model_module": "@jupyter-widgets/controls",
|
355 |
+
"layout": "IPY_MODEL_70f68a9a51ac46e6ab7e51fb4fc6bda3"
|
356 |
}
|
357 |
},
|
358 |
+
"8ec9e1a4883245daaf029458ee09721f": {
|
359 |
"model_module": "@jupyter-widgets/controls",
|
360 |
"model_name": "HTMLModel",
|
361 |
"state": {
|
362 |
"_view_name": "HTMLView",
|
363 |
+
"style": "IPY_MODEL_fdb8ab377c114bc3b862ba76eb93cef7",
|
364 |
"_dom_classes": [],
|
365 |
"description": "",
|
366 |
"_model_name": "HTMLModel",
|
367 |
"placeholder": "β",
|
368 |
"_view_module": "@jupyter-widgets/controls",
|
369 |
"_model_module_version": "1.5.0",
|
370 |
+
"value": " 21.1M/21.1M [00:36<00:00, 605kB/s]",
|
371 |
"_view_count": null,
|
372 |
"_view_module_version": "1.5.0",
|
373 |
"description_tooltip": null,
|
374 |
"_model_module": "@jupyter-widgets/controls",
|
375 |
+
"layout": "IPY_MODEL_cd267c153c244621a1f50706d2ddc897"
|
376 |
}
|
377 |
},
|
378 |
+
"9d3e775ee11e4cf4b587b64fbc3cc6f7": {
|
379 |
"model_module": "@jupyter-widgets/controls",
|
380 |
"model_name": "ProgressStyleModel",
|
381 |
"state": {
|
|
|
390 |
"_model_module": "@jupyter-widgets/controls"
|
391 |
}
|
392 |
},
|
393 |
+
"70f68a9a51ac46e6ab7e51fb4fc6bda3": {
|
394 |
"model_module": "@jupyter-widgets/base",
|
395 |
"model_name": "LayoutModel",
|
396 |
"state": {
|
|
|
441 |
"left": null
|
442 |
}
|
443 |
},
|
444 |
+
"fdb8ab377c114bc3b862ba76eb93cef7": {
|
445 |
"model_module": "@jupyter-widgets/controls",
|
446 |
"model_name": "DescriptionStyleModel",
|
447 |
"state": {
|
|
|
455 |
"_model_module": "@jupyter-widgets/controls"
|
456 |
}
|
457 |
},
|
458 |
+
"cd267c153c244621a1f50706d2ddc897": {
|
459 |
"model_module": "@jupyter-widgets/base",
|
460 |
"model_name": "LayoutModel",
|
461 |
"state": {
|
|
|
517 |
"colab_type": "text"
|
518 |
},
|
519 |
"source": [
|
520 |
+
"<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
|
|
521 |
]
|
522 |
},
|
523 |
{
|
|
|
550 |
"colab": {
|
551 |
"base_uri": "https://localhost:8080/"
|
552 |
},
|
553 |
+
"outputId": "0cabe440-e06c-48b9-9180-4b4ea1790ff5"
|
554 |
},
|
555 |
"source": [
|
556 |
"!git clone https://github.com/ultralytics/yolov5 # clone repo\n",
|
|
|
563 |
"clear_output()\n",
|
564 |
"print(f\"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})\")"
|
565 |
],
|
566 |
+
"execution_count": 1,
|
567 |
"outputs": [
|
568 |
{
|
569 |
"output_type": "stream",
|
|
|
662 |
"id": "WQPtK1QYVaD_",
|
663 |
"colab": {
|
664 |
"base_uri": "https://localhost:8080/",
|
665 |
+
"height": 66,
|
666 |
"referenced_widgets": [
|
667 |
+
"cef5e9351ca743bcba5febac0b096a30",
|
668 |
+
"ec326c52378f4410920c328f221e0514",
|
669 |
+
"83000c64a11c4ae8abd6f0ef2f108cef",
|
670 |
+
"0f7899eb719f4a9c9852426551f97be9",
|
671 |
+
"886ac5b18b3c4c82bf15ad5055f1e17e",
|
672 |
+
"4e67b3c3a49849c7a7ba28b7eec96e7a",
|
673 |
+
"62c3682ff1804571a483d46664533969",
|
674 |
+
"599dda3b608b432393760b2ca4ae7c7d"
|
675 |
]
|
676 |
},
|
677 |
+
"outputId": "56b6402a-81d5-41d0-a3c8-8889db1fca6c"
|
678 |
},
|
679 |
"source": [
|
680 |
"# Download COCO val2017\n",
|
681 |
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
|
682 |
"!unzip -q tmp.zip -d ../ && rm tmp.zip"
|
683 |
],
|
684 |
+
"execution_count": 2,
|
685 |
"outputs": [
|
686 |
{
|
687 |
"output_type": "display_data",
|
688 |
"data": {
|
689 |
"application/vnd.jupyter.widget-view+json": {
|
690 |
+
"model_id": "cef5e9351ca743bcba5febac0b096a30",
|
691 |
"version_minor": 0,
|
692 |
"version_major": 2
|
693 |
},
|
|
|
715 |
"colab": {
|
716 |
"base_uri": "https://localhost:8080/"
|
717 |
},
|
718 |
+
"outputId": "a5d41761-f1a0-41fe-d0bb-4cceebd7c4a6"
|
719 |
},
|
720 |
"source": [
|
721 |
"# Run YOLOv5x on COCO val2017\n",
|
722 |
+
"!python test.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half"
|
723 |
],
|
724 |
+
"execution_count": 3,
|
725 |
"outputs": [
|
726 |
{
|
727 |
"output_type": "stream",
|
728 |
"text": [
|
729 |
+
"Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', exist_ok=False, half=True, img_size=640, iou_thres=0.65, name='exp', project='runs/test', save_conf=False, save_hybrid=False, save_json=True, save_txt=False, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt'])\n",
|
730 |
+
"YOLOv5 π v5.0-157-gc6b51f4 torch 1.8.1+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
|
731 |
"\n",
|
732 |
"Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5x.pt to yolov5x.pt...\n",
|
733 |
+
"100% 168M/168M [00:01<00:00, 156MB/s]\n",
|
734 |
"\n",
|
735 |
"Fusing layers... \n",
|
736 |
+
"Model Summary: 476 layers, 87730285 parameters, 0 gradients\n",
|
737 |
+
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 3008.87it/s]\n",
|
738 |
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../coco/val2017.cache\n",
|
739 |
+
" Class Images Labels P R [email protected] [email protected]:.95: 100% 157/157 [01:17<00:00, 2.02it/s]\n",
|
740 |
+
" all 5000 36335 0.746 0.626 0.68 0.49\n",
|
741 |
+
"Speed: 5.3/1.5/6.8 ms inference/NMS/total per 640x640 image at batch-size 32\n",
|
742 |
"\n",
|
743 |
"Evaluating pycocotools mAP... saving runs/test/exp/yolov5x_predictions.json...\n",
|
744 |
"loading annotations into memory...\n",
|
745 |
+
"Done (t=0.44s)\n",
|
746 |
"creating index...\n",
|
747 |
"index created!\n",
|
748 |
"Loading and preparing results...\n",
|
749 |
+
"DONE (t=4.88s)\n",
|
750 |
"creating index...\n",
|
751 |
"index created!\n",
|
752 |
"Running per image evaluation...\n",
|
753 |
"Evaluate annotation type *bbox*\n",
|
754 |
+
"DONE (t=83.47s).\n",
|
755 |
"Accumulating evaluation results...\n",
|
756 |
+
"DONE (t=12.96s).\n",
|
757 |
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.504\n",
|
758 |
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n",
|
759 |
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.546\n",
|
|
|
826 |
"id": "Knxi2ncxWffW",
|
827 |
"colab": {
|
828 |
"base_uri": "https://localhost:8080/",
|
829 |
+
"height": 66,
|
830 |
"referenced_widgets": [
|
831 |
+
"217ca488c82a4b7a80318b70887a556e",
|
832 |
+
"4e63af16f1084ca98a6fa5a282f2a81e",
|
833 |
+
"49f4b3c7f6ff42b4b9132a8550e12186",
|
834 |
+
"8ec9e1a4883245daaf029458ee09721f",
|
835 |
+
"9d3e775ee11e4cf4b587b64fbc3cc6f7",
|
836 |
+
"70f68a9a51ac46e6ab7e51fb4fc6bda3",
|
837 |
+
"fdb8ab377c114bc3b862ba76eb93cef7",
|
838 |
+
"cd267c153c244621a1f50706d2ddc897"
|
839 |
]
|
840 |
},
|
841 |
+
"outputId": "9e4788c2-e1d4-4a13-c3d2-984f5df7ffab"
|
842 |
},
|
843 |
"source": [
|
844 |
"# Download COCO128\n",
|
845 |
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip')\n",
|
846 |
"!unzip -q tmp.zip -d ../ && rm tmp.zip"
|
847 |
],
|
848 |
+
"execution_count": 2,
|
849 |
"outputs": [
|
850 |
{
|
851 |
"output_type": "display_data",
|
852 |
"data": {
|
853 |
"application/vnd.jupyter.widget-view+json": {
|
854 |
+
"model_id": "217ca488c82a4b7a80318b70887a556e",
|
855 |
"version_minor": 0,
|
856 |
"version_major": 2
|
857 |
},
|
|
|
917 |
"colab": {
|
918 |
"base_uri": "https://localhost:8080/"
|
919 |
},
|
920 |
+
"outputId": "70004839-0c90-4bc0-c0e5-9a92f3e65b01"
|
921 |
},
|
922 |
"source": [
|
923 |
"# Train YOLOv5s on COCO128 for 3 epochs\n",
|
924 |
+
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
|
925 |
],
|
926 |
+
"execution_count": 4,
|
927 |
"outputs": [
|
928 |
{
|
929 |
"output_type": "stream",
|
930 |
"text": [
|
931 |
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 β
\n",
|
932 |
+
"YOLOv5 π v5.0-157-gc6b51f4 torch 1.8.1+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
|
933 |
+
"\n",
|
934 |
+
"Namespace(adam=False, artifact_alias='latest', batch_size=16, bbox_interval=-1, bucket='', cache_images=True, cfg='', data='./data/coco128.yaml', device='', entity=None, epochs=1, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], label_smoothing=0.0, linear_lr=False, local_rank=-1, multi_scale=False, name='exp', noautoanchor=False, nosave=False, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs/train/exp', save_period=-1, single_cls=False, sync_bn=False, total_batch_size=16, upload_dataset=False, weights='yolov5s.pt', workers=8, world_size=1)\n",
|
935 |
+
"\u001b[34m\u001b[1mtensorboard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
|
936 |
+
"2021-06-08 16:52:25.719745: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n",
|
937 |
+
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0\n",
|
938 |
+
"\u001b[34m\u001b[1mwandb: \u001b[0mInstall Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)\n",
|
939 |
+
"Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt to yolov5s.pt...\n",
|
940 |
+
"100% 14.1M/14.1M [00:00<00:00, 18.7MB/s]\n",
|
941 |
+
"\n",
|
942 |
+
"\n",
|
943 |
+
" from n params module arguments \n",
|
944 |
+
" 0 -1 1 3520 models.common.Focus [3, 32, 3] \n",
|
945 |
+
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
|
946 |
+
" 2 -1 1 18816 models.common.C3 [64, 64, 1] \n",
|
947 |
+
" 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n",
|
948 |
+
" 4 -1 1 156928 models.common.C3 [128, 128, 3] \n",
|
949 |
+
" 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n",
|
950 |
+
" 6 -1 1 625152 models.common.C3 [256, 256, 3] \n",
|
951 |
+
" 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n",
|
952 |
+
" 8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]] \n",
|
953 |
+
" 9 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
|
954 |
+
" 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n",
|
955 |
+
" 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
|
956 |
+
" 12 [-1, 6] 1 0 models.common.Concat [1] \n",
|
957 |
+
" 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n",
|
958 |
+
" 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n",
|
959 |
+
" 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
|
960 |
+
" 16 [-1, 4] 1 0 models.common.Concat [1] \n",
|
961 |
+
" 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n",
|
962 |
+
" 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n",
|
963 |
+
" 19 [-1, 14] 1 0 models.common.Concat [1] \n",
|
964 |
+
" 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n",
|
965 |
+
" 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n",
|
966 |
+
" 22 [-1, 10] 1 0 models.common.Concat [1] \n",
|
967 |
+
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
|
968 |
+
" 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
|
969 |
+
"Model Summary: 283 layers, 7276605 parameters, 7276605 gradients, 17.1 GFLOPs\n",
|
970 |
+
"\n",
|
971 |
+
"Transferred 362/362 items from yolov5s.pt\n",
|
972 |
+
"\n",
|
973 |
+
"WARNING: Dataset not found, nonexistent paths: ['/content/coco128/images/train2017']\n",
|
974 |
+
"Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip ...\n",
|
975 |
+
"100% 21.1M/21.1M [00:00<00:00, 68.2MB/s]\n",
|
976 |
+
"Dataset autodownload success\n",
|
977 |
+
"\n",
|
978 |
+
"Scaled weight_decay = 0.0005\n",
|
979 |
+
"Optimizer groups: 62 .bias, 62 conv.weight, 59 other\n",
|
980 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 2036.51it/s]\n",
|
981 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: ../coco128/labels/train2017.cache\n",
|
982 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 189.76it/s]\n",
|
983 |
+
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 687414.74it/s]\n",
|
984 |
+
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:01<00:00, 93.37it/s]\n",
|
985 |
+
"Plotting labels... \n",
|
986 |
+
"\n",
|
987 |
+
"\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n",
|
988 |
+
"Image sizes 640 train, 640 test\n",
|
989 |
+
"Using 2 dataloader workers\n",
|
990 |
+
"Logging results to runs/train/exp\n",
|
991 |
+
"Starting training for 1 epochs...\n",
|
992 |
+
"\n",
|
993 |
+
" Epoch gpu_mem box obj cls total labels img_size\n",
|
994 |
+
" 0/0 10.8G 0.04226 0.06068 0.02005 0.123 158 640: 100% 8/8 [00:05<00:00, 1.35it/s]\n",
|
995 |
+
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:06<00:00, 1.53s/it]\n",
|
996 |
+
" all 128 929 0.633 0.641 0.668 0.439\n",
|
997 |
+
"1 epochs completed in 0.005 hours.\n",
|
998 |
+
"\n",
|
999 |
+
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
|
1000 |
+
"Optimizer stripped from runs/train/exp/weights/best.pt, 14.8MB\n",
|
1001 |
+
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 β
\n",
|
1002 |
+
"YOLOv5 π v5.0-157-gc6b51f4 torch 1.8.1+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
|
1003 |
"\n",
|
1004 |
+
"Namespace(adam=False, artifact_alias='latest', batch_size=16, bbox_interval=-1, bucket='', cache_images=True, cfg='', data='./data/coco128.yaml', device='', entity=None, epochs=3, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], label_smoothing=0.0, linear_lr=False, local_rank=-1, multi_scale=False, name='exp', noautoanchor=False, nosave=False, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs/train/exp', save_period=-1, single_cls=False, sync_bn=False, total_batch_size=16, upload_dataset=False, weights='yolov5s.pt', workers=8, world_size=1)\n",
|
1005 |
"\u001b[34m\u001b[1mtensorboard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
|
1006 |
+
"2021-06-08 16:53:03.275914: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n",
|
1007 |
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0\n",
|
1008 |
"\u001b[34m\u001b[1mwandb: \u001b[0mInstall Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)\n",
|
1009 |
"\n",
|
|
|
1038 |
"Transferred 362/362 items from yolov5s.pt\n",
|
1039 |
"Scaled weight_decay = 0.0005\n",
|
1040 |
"Optimizer groups: 62 .bias, 62 conv.weight, 59 other\n",
|
1041 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 824686.50it/s]\n",
|
1042 |
+
"\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 201.90it/s]\n",
|
1043 |
+
"\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 23766.92it/s]\n",
|
1044 |
+
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:01<00:00, 98.35it/s]\n",
|
1045 |
"Plotting labels... \n",
|
1046 |
"\n",
|
1047 |
"\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n",
|
|
|
1051 |
"Starting training for 3 epochs...\n",
|
1052 |
"\n",
|
1053 |
" Epoch gpu_mem box obj cls total labels img_size\n",
|
1054 |
+
" 0/2 10.8G 0.04226 0.06067 0.02005 0.123 158 640: 100% 8/8 [00:05<00:00, 1.41it/s]\n",
|
1055 |
+
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:04<00:00, 1.21s/it]\n",
|
1056 |
+
" all 128 929 0.633 0.641 0.668 0.439\n",
|
1057 |
"\n",
|
1058 |
" Epoch gpu_mem box obj cls total labels img_size\n",
|
1059 |
+
" 1/2 8.29G 0.04571 0.06616 0.01952 0.1314 164 640: 100% 8/8 [00:01<00:00, 5.65it/s]\n",
|
1060 |
+
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:01<00:00, 3.21it/s]\n",
|
1061 |
+
" all 128 929 0.613 0.659 0.669 0.438\n",
|
1062 |
"\n",
|
1063 |
" Epoch gpu_mem box obj cls total labels img_size\n",
|
1064 |
+
" 2/2 8.29G 0.04542 0.0718 0.01861 0.1358 191 640: 100% 8/8 [00:01<00:00, 4.89it/s]\n",
|
1065 |
+
" Class Images Labels P R [email protected] [email protected]:.95: 100% 4/4 [00:02<00:00, 1.48it/s]\n",
|
1066 |
+
" all 128 929 0.636 0.652 0.67 0.44\n",
|
1067 |
"3 epochs completed in 0.007 hours.\n",
|
1068 |
"\n",
|
1069 |
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
|
|
|
1330 |
"outputs": []
|
1331 |
}
|
1332 |
]
|
1333 |
+
}
|