GPU export options (#2297)
Browse files* option for skip last layer and cuda export support
* added parameter device
* fix import
* cleanup 1
* cleanup 2
* opt-in grid
--grid will export with grid computation, default export will skip grid (same as current)
* default --device cpu
GPU export causes ONNX and CoreML errors.
Co-authored-by: Jan Hajek <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>
- models/export.py +8 -4
models/export.py
CHANGED
@@ -17,13 +17,16 @@ import models
|
|
17 |
from models.experimental import attempt_load
|
18 |
from utils.activations import Hardswish, SiLU
|
19 |
from utils.general import set_logging, check_img_size
|
|
|
20 |
|
21 |
if __name__ == '__main__':
|
22 |
parser = argparse.ArgumentParser()
|
23 |
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
|
24 |
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
25 |
-
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
|
26 |
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
|
|
|
|
|
|
27 |
opt = parser.parse_args()
|
28 |
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
29 |
print(opt)
|
@@ -31,7 +34,8 @@ if __name__ == '__main__':
|
|
31 |
t = time.time()
|
32 |
|
33 |
# Load PyTorch model
|
34 |
-
|
|
|
35 |
labels = model.names
|
36 |
|
37 |
# Checks
|
@@ -39,7 +43,7 @@ if __name__ == '__main__':
|
|
39 |
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
40 |
|
41 |
# Input
|
42 |
-
img = torch.zeros(opt.batch_size, 3, *opt.img_size) # image size(1,3,320,192) iDetection
|
43 |
|
44 |
# Update model
|
45 |
for k, m in model.named_modules():
|
@@ -51,7 +55,7 @@ if __name__ == '__main__':
|
|
51 |
m.act = SiLU()
|
52 |
# elif isinstance(m, models.yolo.Detect):
|
53 |
# m.forward = m.forward_export # assign forward (optional)
|
54 |
-
model.model[-1].export =
|
55 |
y = model(img) # dry run
|
56 |
|
57 |
# TorchScript export
|
|
|
17 |
from models.experimental import attempt_load
|
18 |
from utils.activations import Hardswish, SiLU
|
19 |
from utils.general import set_logging, check_img_size
|
20 |
+
from utils.torch_utils import select_device
|
21 |
|
22 |
if __name__ == '__main__':
|
23 |
parser = argparse.ArgumentParser()
|
24 |
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
|
25 |
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
|
|
26 |
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
27 |
+
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
|
28 |
+
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
|
29 |
+
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
30 |
opt = parser.parse_args()
|
31 |
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
32 |
print(opt)
|
|
|
34 |
t = time.time()
|
35 |
|
36 |
# Load PyTorch model
|
37 |
+
device = select_device(opt.device)
|
38 |
+
model = attempt_load(opt.weights, map_location=device) # load FP32 model
|
39 |
labels = model.names
|
40 |
|
41 |
# Checks
|
|
|
43 |
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
44 |
|
45 |
# Input
|
46 |
+
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
|
47 |
|
48 |
# Update model
|
49 |
for k, m in model.named_modules():
|
|
|
55 |
m.act = SiLU()
|
56 |
# elif isinstance(m, models.yolo.Detect):
|
57 |
# m.forward = m.forward_export # assign forward (optional)
|
58 |
+
model.model[-1].export = not opt.grid # set Detect() layer grid export
|
59 |
y = model(img) # dry run
|
60 |
|
61 |
# TorchScript export
|