Jan Hajek Jan Hajek glenn-jocher commited on
Commit
7a0a81f
·
unverified ·
1 Parent(s): cd8ed35

GPU export options (#2297)

Browse files

* option for skip last layer and cuda export support

* added parameter device

* fix import

* cleanup 1

* cleanup 2

* opt-in grid

--grid will export with grid computation, default export will skip grid (same as current)

* default --device cpu

GPU export causes ONNX and CoreML errors.

Co-authored-by: Jan Hajek <[email protected]>
Co-authored-by: Glenn Jocher <[email protected]>

Files changed (1) hide show
  1. models/export.py +8 -4
models/export.py CHANGED
@@ -17,13 +17,16 @@ import models
17
  from models.experimental import attempt_load
18
  from utils.activations import Hardswish, SiLU
19
  from utils.general import set_logging, check_img_size
 
20
 
21
  if __name__ == '__main__':
22
  parser = argparse.ArgumentParser()
23
  parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
24
  parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
25
- parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
26
  parser.add_argument('--batch-size', type=int, default=1, help='batch size')
 
 
 
27
  opt = parser.parse_args()
28
  opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
29
  print(opt)
@@ -31,7 +34,8 @@ if __name__ == '__main__':
31
  t = time.time()
32
 
33
  # Load PyTorch model
34
- model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model
 
35
  labels = model.names
36
 
37
  # Checks
@@ -39,7 +43,7 @@ if __name__ == '__main__':
39
  opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
40
 
41
  # Input
42
- img = torch.zeros(opt.batch_size, 3, *opt.img_size) # image size(1,3,320,192) iDetection
43
 
44
  # Update model
45
  for k, m in model.named_modules():
@@ -51,7 +55,7 @@ if __name__ == '__main__':
51
  m.act = SiLU()
52
  # elif isinstance(m, models.yolo.Detect):
53
  # m.forward = m.forward_export # assign forward (optional)
54
- model.model[-1].export = True # set Detect() layer export=True
55
  y = model(img) # dry run
56
 
57
  # TorchScript export
 
17
  from models.experimental import attempt_load
18
  from utils.activations import Hardswish, SiLU
19
  from utils.general import set_logging, check_img_size
20
+ from utils.torch_utils import select_device
21
 
22
  if __name__ == '__main__':
23
  parser = argparse.ArgumentParser()
24
  parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
25
  parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
 
26
  parser.add_argument('--batch-size', type=int, default=1, help='batch size')
27
+ parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
28
+ parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
29
+ parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
30
  opt = parser.parse_args()
31
  opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
32
  print(opt)
 
34
  t = time.time()
35
 
36
  # Load PyTorch model
37
+ device = select_device(opt.device)
38
+ model = attempt_load(opt.weights, map_location=device) # load FP32 model
39
  labels = model.names
40
 
41
  # Checks
 
43
  opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
44
 
45
  # Input
46
+ img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
47
 
48
  # Update model
49
  for k, m in model.named_modules():
 
55
  m.act = SiLU()
56
  # elif isinstance(m, models.yolo.Detect):
57
  # m.forward = m.forward_export # assign forward (optional)
58
+ model.model[-1].export = not opt.grid # set Detect() layer grid export
59
  y = model(img) # dry run
60
 
61
  # TorchScript export