Add Multi-Node support for DDP Training (#504)
Browse files* Add support for multi-node DDP
* Remove local_rank confusion
* Fix spacing
train.py
CHANGED
@@ -62,9 +62,9 @@ def train(hyp, opt, device, tb_writer=None):
|
|
62 |
best = wdir + 'best.pt'
|
63 |
results_file = log_dir + os.sep + 'results.txt'
|
64 |
epochs, batch_size, total_batch_size, weights, rank = \
|
65 |
-
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.
|
|
|
66 |
# TODO: Use DDP logging. Only the first process is allowed to log.
|
67 |
-
|
68 |
# Save run settings
|
69 |
with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
|
70 |
yaml.dump(hyp, f, sort_keys=False)
|
@@ -184,7 +184,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|
184 |
|
185 |
# DDP mode
|
186 |
if cuda and rank != -1:
|
187 |
-
model = DDP(model, device_ids=[
|
188 |
|
189 |
# Trainloader
|
190 |
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True,
|
@@ -441,8 +441,7 @@ if __name__ == '__main__':
|
|
441 |
if last and not opt.weights:
|
442 |
print(f'Resuming training from {last}')
|
443 |
opt.weights = last if opt.resume and not opt.weights else opt.weights
|
444 |
-
|
445 |
-
if opt.local_rank in [-1, 0]:
|
446 |
check_git_status()
|
447 |
opt.cfg = check_file(opt.cfg) # check file
|
448 |
opt.data = check_file(opt.data) # check file
|
@@ -454,7 +453,8 @@ if __name__ == '__main__':
|
|
454 |
device = select_device(opt.device, batch_size=opt.batch_size)
|
455 |
opt.total_batch_size = opt.batch_size
|
456 |
opt.world_size = 1
|
457 |
-
|
|
|
458 |
# DDP mode
|
459 |
if opt.local_rank != -1:
|
460 |
assert torch.cuda.device_count() > opt.local_rank
|
@@ -462,6 +462,7 @@ if __name__ == '__main__':
|
|
462 |
device = torch.device('cuda', opt.local_rank)
|
463 |
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
|
464 |
opt.world_size = dist.get_world_size()
|
|
|
465 |
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
|
466 |
opt.batch_size = opt.total_batch_size // opt.world_size
|
467 |
|
@@ -470,7 +471,7 @@ if __name__ == '__main__':
|
|
470 |
# Train
|
471 |
if not opt.evolve:
|
472 |
tb_writer = None
|
473 |
-
if opt.
|
474 |
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
|
475 |
tb_writer = SummaryWriter(log_dir=increment_dir('runs/exp', opt.name))
|
476 |
|
|
|
62 |
best = wdir + 'best.pt'
|
63 |
results_file = log_dir + os.sep + 'results.txt'
|
64 |
epochs, batch_size, total_batch_size, weights, rank = \
|
65 |
+
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
|
66 |
+
|
67 |
# TODO: Use DDP logging. Only the first process is allowed to log.
|
|
|
68 |
# Save run settings
|
69 |
with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
|
70 |
yaml.dump(hyp, f, sort_keys=False)
|
|
|
184 |
|
185 |
# DDP mode
|
186 |
if cuda and rank != -1:
|
187 |
+
model = DDP(model, device_ids=[opt.local_rank], output_device=(opt.local_rank))
|
188 |
|
189 |
# Trainloader
|
190 |
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True,
|
|
|
441 |
if last and not opt.weights:
|
442 |
print(f'Resuming training from {last}')
|
443 |
opt.weights = last if opt.resume and not opt.weights else opt.weights
|
444 |
+
if opt.local_rank == -1 or ("RANK" in os.environ and os.environ["RANK"] == "0"):
|
|
|
445 |
check_git_status()
|
446 |
opt.cfg = check_file(opt.cfg) # check file
|
447 |
opt.data = check_file(opt.data) # check file
|
|
|
453 |
device = select_device(opt.device, batch_size=opt.batch_size)
|
454 |
opt.total_batch_size = opt.batch_size
|
455 |
opt.world_size = 1
|
456 |
+
opt.global_rank = -1
|
457 |
+
|
458 |
# DDP mode
|
459 |
if opt.local_rank != -1:
|
460 |
assert torch.cuda.device_count() > opt.local_rank
|
|
|
462 |
device = torch.device('cuda', opt.local_rank)
|
463 |
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
|
464 |
opt.world_size = dist.get_world_size()
|
465 |
+
opt.global_rank = dist.get_rank()
|
466 |
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
|
467 |
opt.batch_size = opt.total_batch_size // opt.world_size
|
468 |
|
|
|
471 |
# Train
|
472 |
if not opt.evolve:
|
473 |
tb_writer = None
|
474 |
+
if opt.global_rank in [-1, 0]:
|
475 |
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
|
476 |
tb_writer = SummaryWriter(log_dir=increment_dir('runs/exp', opt.name))
|
477 |
|