Commit
·
8fa3724
1
Parent(s):
bdd9fee
kmean_anchors() update
Browse files- utils/utils.py +21 -8
utils/utils.py
CHANGED
@@ -16,6 +16,7 @@ import numpy as np
|
|
16 |
import torch
|
17 |
import torch.nn as nn
|
18 |
import torchvision
|
|
|
19 |
from scipy.signal import butter, filtfilt
|
20 |
from tqdm import tqdm
|
21 |
|
@@ -686,12 +687,23 @@ def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43):
|
|
686 |
shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images
|
687 |
|
688 |
|
689 |
-
def kmean_anchors(path='./data/coco128.
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
695 |
from utils.datasets import LoadImagesAndLabels
|
696 |
|
697 |
def print_results(k):
|
@@ -727,7 +739,9 @@ def kmean_anchors(path='./data/coco128.txt', n=9, img_size=(640, 640), thr=0.20,
|
|
727 |
|
728 |
# Get label wh
|
729 |
wh = []
|
730 |
-
|
|
|
|
|
731 |
nr = 1 if img_size[0] == img_size[1] else 3 # number augmentation repetitions
|
732 |
for s, l in zip(dataset.shapes, dataset.labels):
|
733 |
# wh.append(l[:, 3:5] * (s / s.max())) # image normalized to letterbox normalized wh
|
@@ -771,7 +785,6 @@ def kmean_anchors(path='./data/coco128.txt', n=9, img_size=(640, 640), thr=0.20,
|
|
771 |
f, k = fg, kg.copy()
|
772 |
print_results(k)
|
773 |
k = print_results(k)
|
774 |
-
|
775 |
return k
|
776 |
|
777 |
|
|
|
16 |
import torch
|
17 |
import torch.nn as nn
|
18 |
import torchvision
|
19 |
+
import yaml
|
20 |
from scipy.signal import butter, filtfilt
|
21 |
from tqdm import tqdm
|
22 |
|
|
|
687 |
shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images
|
688 |
|
689 |
|
690 |
+
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=(640, 640), thr=0.20, gen=1000):
|
691 |
+
""" Creates kmeans-evolved anchors from training dataset
|
692 |
+
|
693 |
+
Arguments:
|
694 |
+
path: path to dataset *.yaml
|
695 |
+
n: number of anchors
|
696 |
+
img_size: (min, max) image size used for multi-scale training (can be same values)
|
697 |
+
thr: IoU threshold hyperparameter used for training (0.0 - 1.0)
|
698 |
+
gen: generations to evolve anchors using genetic algorithm
|
699 |
+
|
700 |
+
Return:
|
701 |
+
k: kmeans evolved anchors
|
702 |
+
|
703 |
+
Usage:
|
704 |
+
from utils.utils import *; _ = kmean_anchors()
|
705 |
+
"""
|
706 |
+
|
707 |
from utils.datasets import LoadImagesAndLabels
|
708 |
|
709 |
def print_results(k):
|
|
|
739 |
|
740 |
# Get label wh
|
741 |
wh = []
|
742 |
+
with open(path) as f:
|
743 |
+
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
744 |
+
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
745 |
nr = 1 if img_size[0] == img_size[1] else 3 # number augmentation repetitions
|
746 |
for s, l in zip(dataset.shapes, dataset.labels):
|
747 |
# wh.append(l[:, 3:5] * (s / s.max())) # image normalized to letterbox normalized wh
|
|
|
785 |
f, k = fg, kg.copy()
|
786 |
print_results(k)
|
787 |
k = print_results(k)
|
|
|
788 |
return k
|
789 |
|
790 |
|