Add PyTorch Hub `results.save(labels=False)` option (#7129)
Browse filesResolves https://github.com/ultralytics/yolov5/issues/388#issuecomment-1077121821
- models/common.py +9 -9
models/common.py
CHANGED
@@ -131,7 +131,7 @@ class C3(nn.Module):
|
|
131 |
c_ = int(c2 * e) # hidden channels
|
132 |
self.cv1 = Conv(c1, c_, 1, 1)
|
133 |
self.cv2 = Conv(c1, c_, 1, 1)
|
134 |
-
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
|
135 |
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
136 |
# self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
|
137 |
|
@@ -589,7 +589,7 @@ class Detections:
|
|
589 |
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
|
590 |
self.s = shape # inference BCHW shape
|
591 |
|
592 |
-
def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
|
593 |
crops = []
|
594 |
for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
|
595 |
s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
@@ -606,7 +606,7 @@ class Detections:
|
|
606 |
crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label,
|
607 |
'im': save_one_box(box, im, file=file, save=save)})
|
608 |
else: # all others
|
609 |
-
annotator.box_label(box, label, color=colors(cls))
|
610 |
im = annotator.im
|
611 |
else:
|
612 |
s += '(no detections)'
|
@@ -633,19 +633,19 @@ class Detections:
|
|
633 |
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
|
634 |
self.t)
|
635 |
|
636 |
-
def show(self):
|
637 |
-
self.display(show=True) # show results
|
638 |
|
639 |
-
def save(self, save_dir='runs/detect/exp'):
|
640 |
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
|
641 |
-
self.display(save=True, save_dir=save_dir) # save results
|
642 |
|
643 |
def crop(self, save=True, save_dir='runs/detect/exp'):
|
644 |
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
|
645 |
return self.display(crop=True, save=save, save_dir=save_dir) # crop results
|
646 |
|
647 |
-
def render(self):
|
648 |
-
self.display(render=True) # render results
|
649 |
return self.imgs
|
650 |
|
651 |
def pandas(self):
|
|
|
131 |
c_ = int(c2 * e) # hidden channels
|
132 |
self.cv1 = Conv(c1, c_, 1, 1)
|
133 |
self.cv2 = Conv(c1, c_, 1, 1)
|
134 |
+
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
135 |
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
136 |
# self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
|
137 |
|
|
|
589 |
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
|
590 |
self.s = shape # inference BCHW shape
|
591 |
|
592 |
+
def display(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
|
593 |
crops = []
|
594 |
for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
|
595 |
s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
|
|
606 |
crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label,
|
607 |
'im': save_one_box(box, im, file=file, save=save)})
|
608 |
else: # all others
|
609 |
+
annotator.box_label(box, label if labels else '', color=colors(cls))
|
610 |
im = annotator.im
|
611 |
else:
|
612 |
s += '(no detections)'
|
|
|
633 |
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
|
634 |
self.t)
|
635 |
|
636 |
+
def show(self, labels=True):
|
637 |
+
self.display(show=True, labels=labels) # show results
|
638 |
|
639 |
+
def save(self, labels=True, save_dir='runs/detect/exp'):
|
640 |
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
|
641 |
+
self.display(save=True, labels=labels, save_dir=save_dir) # save results
|
642 |
|
643 |
def crop(self, save=True, save_dir='runs/detect/exp'):
|
644 |
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
|
645 |
return self.display(crop=True, save=save, save_dir=save_dir) # crop results
|
646 |
|
647 |
+
def render(self, labels=True):
|
648 |
+
self.display(render=True, labels=labels) # render results
|
649 |
return self.imgs
|
650 |
|
651 |
def pandas(self):
|