glenn-jocher pre-commit-ci[bot] commited on
Commit
a45e472
·
unverified ·
1 Parent(s): 96d8f86

YOLOv5 Export Benchmarks (#6613)

Browse files

* Add benchmarks.py

* Update

* Add requirements

* Updates

* Updates

* Updates

* Updates

* Updates

* Updates

* dataset autodownload from root

* Update

* Redirect to /dev/null

* sudo --help

* Cleanup

* Add exports pd df

* Updates

* Updates

* Updates

* Cleanup

* dir handling fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Cleanup

* Cleanup2

* Cleanup3

* Cleanup model_type

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

Files changed (4) hide show
  1. export.py +17 -0
  2. models/common.py +15 -4
  3. utils/benchmarks.py +92 -0
  4. val.py +3 -2
export.py CHANGED
@@ -52,6 +52,7 @@ import time
52
  import warnings
53
  from pathlib import Path
54
 
 
55
  import torch
56
  import torch.nn as nn
57
  from torch.utils.mobile_optimizer import optimize_for_mobile
@@ -72,6 +73,22 @@ from utils.general import (LOGGER, check_dataset, check_img_size, check_requirem
72
  from utils.torch_utils import select_device
73
 
74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
76
  # YOLOv5 TorchScript model export
77
  try:
 
52
  import warnings
53
  from pathlib import Path
54
 
55
+ import pandas as pd
56
  import torch
57
  import torch.nn as nn
58
  from torch.utils.mobile_optimizer import optimize_for_mobile
 
73
  from utils.torch_utils import select_device
74
 
75
 
76
+ def export_formats():
77
+ # YOLOv5 export formats
78
+ x = [['PyTorch', '-', '.pt'],
79
+ ['TorchScript', 'torchscript', '.torchscript'],
80
+ ['ONNX', 'onnx', '.onnx'],
81
+ ['OpenVINO', 'openvino', '_openvino_model'],
82
+ ['TensorRT', 'engine', '.engine'],
83
+ ['CoreML', 'coreml', '.mlmodel'],
84
+ ['TensorFlow SavedModel', 'saved_model', '_saved_model'],
85
+ ['TensorFlow GraphDef', 'pb', '.pb'],
86
+ ['TensorFlow Lite', 'tflite', '.tflite'],
87
+ ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite'],
88
+ ['TensorFlow.js', 'tfjs', '_web_model']]
89
+ return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix'])
90
+
91
+
92
  def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
93
  # YOLOv5 TorchScript model export
94
  try:
models/common.py CHANGED
@@ -294,10 +294,7 @@ class DetectMultiBackend(nn.Module):
294
 
295
  super().__init__()
296
  w = str(weights[0] if isinstance(weights, list) else weights)
297
- suffix = Path(w).suffix.lower()
298
- suffixes = ['.pt', '.torchscript', '.onnx', '.engine', '.tflite', '.pb', '', '.mlmodel', '.xml']
299
- check_suffix(w, suffixes) # check weights have acceptable suffix
300
- pt, jit, onnx, engine, tflite, pb, saved_model, coreml, xml = (suffix == x for x in suffixes) # backends
301
  stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
302
  w = attempt_download(w) # download if not local
303
  if data: # data.yaml path (optional)
@@ -332,6 +329,8 @@ class DetectMultiBackend(nn.Module):
332
  check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
333
  import openvino.inference_engine as ie
334
  core = ie.IECore()
 
 
335
  network = core.read_network(model=w, weights=Path(w).with_suffix('.bin')) # *.xml, *.bin paths
336
  executable_network = core.load_network(network, device_name='CPU', num_requests=1)
337
  elif engine: # TensorRT
@@ -459,6 +458,18 @@ class DetectMultiBackend(nn.Module):
459
  im = torch.zeros(*imgsz).to(self.device).type(torch.half if half else torch.float) # input image
460
  self.forward(im) # warmup
461
 
 
 
 
 
 
 
 
 
 
 
 
 
462
 
463
  class AutoShape(nn.Module):
464
  # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
 
294
 
295
  super().__init__()
296
  w = str(weights[0] if isinstance(weights, list) else weights)
297
+ pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w) # get backend
 
 
 
298
  stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
299
  w = attempt_download(w) # download if not local
300
  if data: # data.yaml path (optional)
 
329
  check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
330
  import openvino.inference_engine as ie
331
  core = ie.IECore()
332
+ if not Path(w).is_file(): # if not *.xml
333
+ w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
334
  network = core.read_network(model=w, weights=Path(w).with_suffix('.bin')) # *.xml, *.bin paths
335
  executable_network = core.load_network(network, device_name='CPU', num_requests=1)
336
  elif engine: # TensorRT
 
458
  im = torch.zeros(*imgsz).to(self.device).type(torch.half if half else torch.float) # input image
459
  self.forward(im) # warmup
460
 
461
+ @staticmethod
462
+ def model_type(p='path/to/model.pt'):
463
+ # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
464
+ from export import export_formats
465
+ suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes
466
+ check_suffix(p, suffixes) # checks
467
+ p = Path(p).name # eliminate trailing separators
468
+ pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
469
+ xml |= xml2 # *_openvino_model or *.xml
470
+ tflite &= not edgetpu # *.tflite
471
+ return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
472
+
473
 
474
  class AutoShape(nn.Module):
475
  # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
utils/benchmarks.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Run YOLOv5 benchmarks on all supported export formats
4
+
5
+ Format | `export.py --include` | Model
6
+ --- | --- | ---
7
+ PyTorch | - | yolov5s.pt
8
+ TorchScript | `torchscript` | yolov5s.torchscript
9
+ ONNX | `onnx` | yolov5s.onnx
10
+ OpenVINO | `openvino` | yolov5s_openvino_model/
11
+ TensorRT | `engine` | yolov5s.engine
12
+ CoreML | `coreml` | yolov5s.mlmodel
13
+ TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
14
+ TensorFlow GraphDef | `pb` | yolov5s.pb
15
+ TensorFlow Lite | `tflite` | yolov5s.tflite
16
+ TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
17
+ TensorFlow.js | `tfjs` | yolov5s_web_model/
18
+
19
+ Requirements:
20
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
21
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
22
+
23
+ Usage:
24
+ $ python utils/benchmarks.py --weights yolov5s.pt --img 640
25
+ """
26
+
27
+ import argparse
28
+ import sys
29
+ import time
30
+ from pathlib import Path
31
+
32
+ import pandas as pd
33
+
34
+ FILE = Path(__file__).resolve()
35
+ ROOT = FILE.parents[1] # YOLOv5 root directory
36
+ if str(ROOT) not in sys.path:
37
+ sys.path.append(str(ROOT)) # add ROOT to PATH
38
+ # ROOT = ROOT.relative_to(Path.cwd()) # relative
39
+
40
+ import export
41
+ import val
42
+ from utils import notebook_init
43
+ from utils.general import LOGGER, print_args
44
+
45
+
46
+ def run(weights=ROOT / 'yolov5s.pt', # weights path
47
+ imgsz=640, # inference size (pixels)
48
+ batch_size=1, # batch size
49
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
50
+ ):
51
+ y, t = [], time.time()
52
+ formats = export.export_formats()
53
+ for i, (name, f, suffix) in formats.iterrows(): # index, (name, file, suffix)
54
+ try:
55
+ w = weights if f == '-' else export.run(weights=weights, imgsz=[imgsz], include=[f], device='cpu')[-1]
56
+ assert suffix in str(w), 'export failed'
57
+ result = val.run(data, w, batch_size, imgsz=imgsz, plots=False, device='cpu', task='benchmark')
58
+ metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls))
59
+ speeds = result[2] # times (preprocess, inference, postprocess)
60
+ y.append([name, metrics[3], speeds[1]]) # mAP, t_inference
61
+ except Exception as e:
62
+ LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}')
63
+ y.append([name, None, None]) # mAP, t_inference
64
+
65
+ # Print results
66
+ LOGGER.info('\n')
67
+ parse_opt()
68
+ notebook_init() # print system info
69
+ py = pd.DataFrame(y, columns=['Format', '[email protected]:0.95', 'Inference time (ms)'])
70
+ LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
71
+ LOGGER.info(str(py))
72
+ return py
73
+
74
+
75
+ def parse_opt():
76
+ parser = argparse.ArgumentParser()
77
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
78
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
79
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
80
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
81
+ opt = parser.parse_args()
82
+ print_args(FILE.stem, opt)
83
+ return opt
84
+
85
+
86
+ def main(opt):
87
+ run(**vars(opt))
88
+
89
+
90
+ if __name__ == "__main__":
91
+ opt = parse_opt()
92
+ main(opt)
val.py CHANGED
@@ -163,9 +163,10 @@ def run(data,
163
  # Dataloader
164
  if not training:
165
  model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz), half=half) # warmup
166
- pad = 0.0 if task == 'speed' else 0.5
 
167
  task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
168
- dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=pt,
169
  workers=workers, prefix=colorstr(f'{task}: '))[0]
170
 
171
  seen = 0
 
163
  # Dataloader
164
  if not training:
165
  model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz), half=half) # warmup
166
+ pad = 0.0 if task in ('speed', 'benchmark') else 0.5
167
+ rect = False if task == 'benchmark' else pt # square inference for benchmarks
168
  task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
169
+ dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=rect,
170
  workers=workers, prefix=colorstr(f'{task}: '))[0]
171
 
172
  seen = 0