YOLOv5 Export Benchmarks (#6613)
Browse files* Add benchmarks.py
* Update
* Add requirements
* Updates
* Updates
* Updates
* Updates
* Updates
* Updates
* dataset autodownload from root
* Update
* Redirect to /dev/null
* sudo --help
* Cleanup
* Add exports pd df
* Updates
* Updates
* Updates
* Cleanup
* dir handling fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Cleanup
* Cleanup2
* Cleanup3
* Cleanup model_type
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- export.py +17 -0
- models/common.py +15 -4
- utils/benchmarks.py +92 -0
- val.py +3 -2
export.py
CHANGED
@@ -52,6 +52,7 @@ import time
|
|
52 |
import warnings
|
53 |
from pathlib import Path
|
54 |
|
|
|
55 |
import torch
|
56 |
import torch.nn as nn
|
57 |
from torch.utils.mobile_optimizer import optimize_for_mobile
|
@@ -72,6 +73,22 @@ from utils.general import (LOGGER, check_dataset, check_img_size, check_requirem
|
|
72 |
from utils.torch_utils import select_device
|
73 |
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
76 |
# YOLOv5 TorchScript model export
|
77 |
try:
|
|
|
52 |
import warnings
|
53 |
from pathlib import Path
|
54 |
|
55 |
+
import pandas as pd
|
56 |
import torch
|
57 |
import torch.nn as nn
|
58 |
from torch.utils.mobile_optimizer import optimize_for_mobile
|
|
|
73 |
from utils.torch_utils import select_device
|
74 |
|
75 |
|
76 |
+
def export_formats():
|
77 |
+
# YOLOv5 export formats
|
78 |
+
x = [['PyTorch', '-', '.pt'],
|
79 |
+
['TorchScript', 'torchscript', '.torchscript'],
|
80 |
+
['ONNX', 'onnx', '.onnx'],
|
81 |
+
['OpenVINO', 'openvino', '_openvino_model'],
|
82 |
+
['TensorRT', 'engine', '.engine'],
|
83 |
+
['CoreML', 'coreml', '.mlmodel'],
|
84 |
+
['TensorFlow SavedModel', 'saved_model', '_saved_model'],
|
85 |
+
['TensorFlow GraphDef', 'pb', '.pb'],
|
86 |
+
['TensorFlow Lite', 'tflite', '.tflite'],
|
87 |
+
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite'],
|
88 |
+
['TensorFlow.js', 'tfjs', '_web_model']]
|
89 |
+
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix'])
|
90 |
+
|
91 |
+
|
92 |
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
93 |
# YOLOv5 TorchScript model export
|
94 |
try:
|
models/common.py
CHANGED
@@ -294,10 +294,7 @@ class DetectMultiBackend(nn.Module):
|
|
294 |
|
295 |
super().__init__()
|
296 |
w = str(weights[0] if isinstance(weights, list) else weights)
|
297 |
-
|
298 |
-
suffixes = ['.pt', '.torchscript', '.onnx', '.engine', '.tflite', '.pb', '', '.mlmodel', '.xml']
|
299 |
-
check_suffix(w, suffixes) # check weights have acceptable suffix
|
300 |
-
pt, jit, onnx, engine, tflite, pb, saved_model, coreml, xml = (suffix == x for x in suffixes) # backends
|
301 |
stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
|
302 |
w = attempt_download(w) # download if not local
|
303 |
if data: # data.yaml path (optional)
|
@@ -332,6 +329,8 @@ class DetectMultiBackend(nn.Module):
|
|
332 |
check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
333 |
import openvino.inference_engine as ie
|
334 |
core = ie.IECore()
|
|
|
|
|
335 |
network = core.read_network(model=w, weights=Path(w).with_suffix('.bin')) # *.xml, *.bin paths
|
336 |
executable_network = core.load_network(network, device_name='CPU', num_requests=1)
|
337 |
elif engine: # TensorRT
|
@@ -459,6 +458,18 @@ class DetectMultiBackend(nn.Module):
|
|
459 |
im = torch.zeros(*imgsz).to(self.device).type(torch.half if half else torch.float) # input image
|
460 |
self.forward(im) # warmup
|
461 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
|
463 |
class AutoShape(nn.Module):
|
464 |
# YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
|
|
294 |
|
295 |
super().__init__()
|
296 |
w = str(weights[0] if isinstance(weights, list) else weights)
|
297 |
+
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w) # get backend
|
|
|
|
|
|
|
298 |
stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
|
299 |
w = attempt_download(w) # download if not local
|
300 |
if data: # data.yaml path (optional)
|
|
|
329 |
check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
330 |
import openvino.inference_engine as ie
|
331 |
core = ie.IECore()
|
332 |
+
if not Path(w).is_file(): # if not *.xml
|
333 |
+
w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
|
334 |
network = core.read_network(model=w, weights=Path(w).with_suffix('.bin')) # *.xml, *.bin paths
|
335 |
executable_network = core.load_network(network, device_name='CPU', num_requests=1)
|
336 |
elif engine: # TensorRT
|
|
|
458 |
im = torch.zeros(*imgsz).to(self.device).type(torch.half if half else torch.float) # input image
|
459 |
self.forward(im) # warmup
|
460 |
|
461 |
+
@staticmethod
|
462 |
+
def model_type(p='path/to/model.pt'):
|
463 |
+
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
|
464 |
+
from export import export_formats
|
465 |
+
suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes
|
466 |
+
check_suffix(p, suffixes) # checks
|
467 |
+
p = Path(p).name # eliminate trailing separators
|
468 |
+
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
|
469 |
+
xml |= xml2 # *_openvino_model or *.xml
|
470 |
+
tflite &= not edgetpu # *.tflite
|
471 |
+
return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
|
472 |
+
|
473 |
|
474 |
class AutoShape(nn.Module):
|
475 |
# YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
utils/benchmarks.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Run YOLOv5 benchmarks on all supported export formats
|
4 |
+
|
5 |
+
Format | `export.py --include` | Model
|
6 |
+
--- | --- | ---
|
7 |
+
PyTorch | - | yolov5s.pt
|
8 |
+
TorchScript | `torchscript` | yolov5s.torchscript
|
9 |
+
ONNX | `onnx` | yolov5s.onnx
|
10 |
+
OpenVINO | `openvino` | yolov5s_openvino_model/
|
11 |
+
TensorRT | `engine` | yolov5s.engine
|
12 |
+
CoreML | `coreml` | yolov5s.mlmodel
|
13 |
+
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
14 |
+
TensorFlow GraphDef | `pb` | yolov5s.pb
|
15 |
+
TensorFlow Lite | `tflite` | yolov5s.tflite
|
16 |
+
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
17 |
+
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
18 |
+
|
19 |
+
Requirements:
|
20 |
+
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
21 |
+
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
22 |
+
|
23 |
+
Usage:
|
24 |
+
$ python utils/benchmarks.py --weights yolov5s.pt --img 640
|
25 |
+
"""
|
26 |
+
|
27 |
+
import argparse
|
28 |
+
import sys
|
29 |
+
import time
|
30 |
+
from pathlib import Path
|
31 |
+
|
32 |
+
import pandas as pd
|
33 |
+
|
34 |
+
FILE = Path(__file__).resolve()
|
35 |
+
ROOT = FILE.parents[1] # YOLOv5 root directory
|
36 |
+
if str(ROOT) not in sys.path:
|
37 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
38 |
+
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
39 |
+
|
40 |
+
import export
|
41 |
+
import val
|
42 |
+
from utils import notebook_init
|
43 |
+
from utils.general import LOGGER, print_args
|
44 |
+
|
45 |
+
|
46 |
+
def run(weights=ROOT / 'yolov5s.pt', # weights path
|
47 |
+
imgsz=640, # inference size (pixels)
|
48 |
+
batch_size=1, # batch size
|
49 |
+
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
50 |
+
):
|
51 |
+
y, t = [], time.time()
|
52 |
+
formats = export.export_formats()
|
53 |
+
for i, (name, f, suffix) in formats.iterrows(): # index, (name, file, suffix)
|
54 |
+
try:
|
55 |
+
w = weights if f == '-' else export.run(weights=weights, imgsz=[imgsz], include=[f], device='cpu')[-1]
|
56 |
+
assert suffix in str(w), 'export failed'
|
57 |
+
result = val.run(data, w, batch_size, imgsz=imgsz, plots=False, device='cpu', task='benchmark')
|
58 |
+
metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls))
|
59 |
+
speeds = result[2] # times (preprocess, inference, postprocess)
|
60 |
+
y.append([name, metrics[3], speeds[1]]) # mAP, t_inference
|
61 |
+
except Exception as e:
|
62 |
+
LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}')
|
63 |
+
y.append([name, None, None]) # mAP, t_inference
|
64 |
+
|
65 |
+
# Print results
|
66 |
+
LOGGER.info('\n')
|
67 |
+
parse_opt()
|
68 |
+
notebook_init() # print system info
|
69 |
+
py = pd.DataFrame(y, columns=['Format', '[email protected]:0.95', 'Inference time (ms)'])
|
70 |
+
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
|
71 |
+
LOGGER.info(str(py))
|
72 |
+
return py
|
73 |
+
|
74 |
+
|
75 |
+
def parse_opt():
|
76 |
+
parser = argparse.ArgumentParser()
|
77 |
+
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
78 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
79 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
80 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
81 |
+
opt = parser.parse_args()
|
82 |
+
print_args(FILE.stem, opt)
|
83 |
+
return opt
|
84 |
+
|
85 |
+
|
86 |
+
def main(opt):
|
87 |
+
run(**vars(opt))
|
88 |
+
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
opt = parse_opt()
|
92 |
+
main(opt)
|
val.py
CHANGED
@@ -163,9 +163,10 @@ def run(data,
|
|
163 |
# Dataloader
|
164 |
if not training:
|
165 |
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz), half=half) # warmup
|
166 |
-
pad = 0.0 if task
|
|
|
167 |
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
|
168 |
-
dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=
|
169 |
workers=workers, prefix=colorstr(f'{task}: '))[0]
|
170 |
|
171 |
seen = 0
|
|
|
163 |
# Dataloader
|
164 |
if not training:
|
165 |
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz), half=half) # warmup
|
166 |
+
pad = 0.0 if task in ('speed', 'benchmark') else 0.5
|
167 |
+
rect = False if task == 'benchmark' else pt # square inference for benchmarks
|
168 |
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
|
169 |
+
dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=rect,
|
170 |
workers=workers, prefix=colorstr(f'{task}: '))[0]
|
171 |
|
172 |
seen = 0
|