glenn-jocher commited on
Commit
ba99092
Β·
unverified Β·
1 Parent(s): 1916226

Update W&B README (#5006)

Browse files
Files changed (1) hide show
  1. utils/loggers/wandb/README.md +45 -38
utils/loggers/wandb/README.md CHANGED
@@ -1,41 +1,44 @@
1
- πŸ“š This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 πŸš€.
2
- * [About Weights & Biases](#about-weights-&-biases)
3
- * [First-Time Setup](#first-time-setup)
4
- * [Viewing runs](#viewing-runs)
5
- * [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
6
- * [Reports: Share your work with the world!](#reports)
7
 
8
  ## About Weights & Biases
9
  Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models β€” architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
10
-
11
- Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
12
-
13
  * [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
14
- * [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4), visualized automatically
15
  * [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
16
  * [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
17
  * [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
18
  * [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
19
-
20
- ## First-Time Setup
21
  <details open>
22
  <summary> Toggle Details </summary>
23
  When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
24
-
25
- W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
26
-
27
  ```shell
28
  $ python train.py --project ... --name ...
29
  ```
30
-
31
- <img alt="" width="800" src="https://user-images.githubusercontent.com/26833433/98183367-4acbc600-1f08-11eb-9a23-7266a4192355.jpg">
 
 
 
32
  </details>
33
-
34
  ## Viewing Runs
35
  <details open>
36
  <summary> Toggle Details </summary>
37
- Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
38
-
39
  * Training & Validation losses
40
  * Metrics: Precision, Recall, [email protected], [email protected]:0.95
41
  * Learning Rate over time
@@ -44,8 +47,10 @@ When you first train, W&B will prompt you to create a new account and will gener
44
  * System: Disk I/0, CPU utilization, RAM memory usage
45
  * Your trained model as W&B Artifact
46
  * Environment: OS and Python types, Git repository and state, **training command**
47
-
48
- <img alt="" width="800" src="https://user-images.githubusercontent.com/26833433/98184457-bd3da580-1f0a-11eb-8461-95d908a71893.jpg">
 
 
49
  </details>
50
 
51
  ## Advanced Usage
@@ -119,22 +124,24 @@ Any run can be resumed using artifacts if the <code>--resume</code> argument sta
119
  </details>
120
 
121
 
122
-
123
  <h3> Reports </h3>
124
- W&B Reports can be created from your saved runs for sharing online. Once a report is created you will receive a link you can use to publically share your results. Here is an example report created from the COCO128 tutorial trainings of all four YOLOv5 models ([link](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY)).
125
-
126
- <img alt="" width="800" src="https://user-images.githubusercontent.com/26833433/98185222-794ba000-1f0c-11eb-850f-3e9c45ad6949.jpg">
127
-
128
- ## Environments
129
- YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
130
-
131
- * **Google Colab and Kaggle** notebooks with free GPU: [![Open In Colab](https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667)](https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb) [![Open In Kaggle](https://camo.githubusercontent.com/a08ca511178e691ace596a95d334f73cf4ce06e83a5c4a5169b8bb68cac27bef/68747470733a2f2f6b6167676c652e636f6d2f7374617469632f696d616765732f6f70656e2d696e2d6b6167676c652e737667)](https://www.kaggle.com/ultralytics/yolov5)
132
- * **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
133
- * **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
134
- * **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) [![Docker Pulls](https://camo.githubusercontent.com/280faedaf431e4c0c24fdb30ec00a66d627404e5c4c498210d3f014dd58c2c7e/68747470733a2f2f696d672e736869656c64732e696f2f646f636b65722f70756c6c732f756c7472616c79746963732f796f6c6f76353f6c6f676f3d646f636b6572)](https://hub.docker.com/r/ultralytics/yolov5)
135
 
136
- ## Status
137
- ![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)
138
-
139
- If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
 
 
 
 
 
 
 
 
 
 
 
 
140
 
 
 
1
+ πŸ“š This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 πŸš€. UPDATED 29 September 2021.
2
+ * [About Weights & Biases](#about-weights-&-biases)
3
+ * [First-Time Setup](#first-time-setup)
4
+ * [Viewing runs](#viewing-runs)
5
+ * [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
6
+ * [Reports: Share your work with the world!](#reports)
7
 
8
  ## About Weights & Biases
9
  Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models β€” architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
10
+
11
+ Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
12
+
13
  * [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
14
+ * [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
15
  * [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
16
  * [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
17
  * [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
18
  * [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
19
+
20
+ ## First-Time Setup
21
  <details open>
22
  <summary> Toggle Details </summary>
23
  When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
24
+
25
+ W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
26
+
27
  ```shell
28
  $ python train.py --project ... --name ...
29
  ```
30
+
31
+ YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
32
+ <img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
33
+
34
+
35
  </details>
36
+
37
  ## Viewing Runs
38
  <details open>
39
  <summary> Toggle Details </summary>
40
+ Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
41
+
42
  * Training & Validation losses
43
  * Metrics: Precision, Recall, [email protected], [email protected]:0.95
44
  * Learning Rate over time
 
47
  * System: Disk I/0, CPU utilization, RAM memory usage
48
  * Your trained model as W&B Artifact
49
  * Environment: OS and Python types, Git repository and state, **training command**
50
+
51
+ <p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
52
+
53
+
54
  </details>
55
 
56
  ## Advanced Usage
 
124
  </details>
125
 
126
 
 
127
  <h3> Reports </h3>
128
+ W&B Reports can be created from your saved runs for sharing online. Once a report is created you will receive a link you can use to publically share your results. Here is an example report created from the COCO128 tutorial trainings of all four YOLOv5 models ([link](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY)).
 
 
 
 
 
 
 
 
 
 
129
 
130
+ <img width="900" alt="Weights & Biases Reports" src="https://user-images.githubusercontent.com/26833433/135394029-a17eaf86-c6c1-4b1d-bb80-b90e83aaffa7.png">
131
+
132
+
133
+ ## Environments
134
+
135
+ YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
136
+
137
+ - **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
138
+ - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
139
+ - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
140
+ - **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
141
+
142
+
143
+ ## Status
144
+
145
+ ![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)
146
 
147
+ If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.