glenn-jocher commited on
Commit
c1a44ed
·
unverified ·
1 Parent(s): 37eaffe

Update hubconf.py for unified loading (#3005)

Browse files
Files changed (1) hide show
  1. hubconf.py +7 -27
hubconf.py CHANGED
@@ -18,7 +18,7 @@ dependencies = ['torch', 'yaml']
18
  check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop'))
19
 
20
 
21
- def create(name, pretrained, channels, classes, autoshape, verbose):
22
  """Creates a specified YOLOv5 model
23
 
24
  Arguments:
@@ -33,7 +33,7 @@ def create(name, pretrained, channels, classes, autoshape, verbose):
33
  YOLOv5 pytorch model
34
  """
35
  set_logging(verbose=verbose)
36
- fname = f'{name}.pt' # checkpoint filename
37
  try:
38
  if pretrained and channels == 3 and classes == 80:
39
  model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model
@@ -60,30 +60,9 @@ def create(name, pretrained, channels, classes, autoshape, verbose):
60
  raise Exception(s) from e
61
 
62
 
63
- def custom(path_or_model='path/to/model.pt', autoshape=True, verbose=True):
64
- """YOLOv5-custom model https://github.com/ultralytics/yolov5
65
-
66
- Arguments (3 options):
67
- path_or_model (str): 'path/to/model.pt'
68
- path_or_model (dict): torch.load('path/to/model.pt')
69
- path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
70
-
71
- Returns:
72
- pytorch model
73
- """
74
- set_logging(verbose=verbose)
75
-
76
- model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
77
- if isinstance(model, dict):
78
- model = model['ema' if model.get('ema') else 'model'] # load model
79
-
80
- hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
81
- hub_model.load_state_dict(model.float().state_dict()) # load state_dict
82
- hub_model.names = model.names # class names
83
- if autoshape:
84
- hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
85
- device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
86
- return hub_model.to(device)
87
 
88
 
89
  def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
@@ -127,7 +106,8 @@ def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=Tr
127
 
128
 
129
  if __name__ == '__main__':
130
- model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
 
131
  # model = custom(path_or_model='path/to/model.pt') # custom
132
 
133
  # Verify inference
 
18
  check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop'))
19
 
20
 
21
+ def create(name, pretrained, channels=3, classes=80, autoshape=True, verbose=True):
22
  """Creates a specified YOLOv5 model
23
 
24
  Arguments:
 
33
  YOLOv5 pytorch model
34
  """
35
  set_logging(verbose=verbose)
36
+ fname = Path(name).with_suffix('.pt') # checkpoint filename
37
  try:
38
  if pretrained and channels == 3 and classes == 80:
39
  model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model
 
60
  raise Exception(s) from e
61
 
62
 
63
+ def custom(path='path/to/model.pt', autoshape=True, verbose=True):
64
+ # YOLOv5 custom or local model
65
+ return create(path, autoshape, verbose)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
 
68
  def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
 
106
 
107
 
108
  if __name__ == '__main__':
109
+ model = create(name='weights/yolov5s.pt', pretrained=True, channels=3, classes=80, autoshape=True,
110
+ verbose=True) # pretrained
111
  # model = custom(path_or_model='path/to/model.pt') # custom
112
 
113
  # Verify inference