Commit
·
c5966ab
1
Parent(s):
ace56eb
glob search bug fix #77
Browse files- test.py +1 -1
- train.py +2 -2
- utils/activations.py +1 -0
- utils/utils.py +10 -0
test.py
CHANGED
@@ -255,7 +255,7 @@ if __name__ == '__main__':
|
|
255 |
opt = parser.parse_args()
|
256 |
opt.img_size = check_img_size(opt.img_size)
|
257 |
opt.save_json = opt.save_json or opt.data.endswith('coco.yaml')
|
258 |
-
opt.data =
|
259 |
print(opt)
|
260 |
|
261 |
# task = 'val', 'test', 'study'
|
|
|
255 |
opt = parser.parse_args()
|
256 |
opt.img_size = check_img_size(opt.img_size)
|
257 |
opt.save_json = opt.save_json or opt.data.endswith('coco.yaml')
|
258 |
+
opt.data = check_file(opt.data) # check file
|
259 |
print(opt)
|
260 |
|
261 |
# task = 'val', 'test', 'study'
|
train.py
CHANGED
@@ -384,8 +384,8 @@ if __name__ == '__main__':
|
|
384 |
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
385 |
opt = parser.parse_args()
|
386 |
opt.weights = last if opt.resume else opt.weights
|
387 |
-
opt.cfg =
|
388 |
-
opt.data =
|
389 |
print(opt)
|
390 |
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
391 |
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
|
|
|
384 |
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
385 |
opt = parser.parse_args()
|
386 |
opt.weights = last if opt.resume else opt.weights
|
387 |
+
opt.cfg = check_file(opt.cfg) # check file
|
388 |
+
opt.data = check_file(opt.data) # check file
|
389 |
print(opt)
|
390 |
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
391 |
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
|
utils/activations.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import torch
|
|
|
2 |
import torch.nn.functional as F
|
3 |
import torch.nn as nn
|
4 |
|
|
|
1 |
import torch
|
2 |
+
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
4 |
import torch.nn as nn
|
5 |
|
utils/utils.py
CHANGED
@@ -64,6 +64,16 @@ def check_best_possible_recall(dataset, anchors, thr):
|
|
64 |
'Compute new anchors with utils.utils.kmeans_anchors() and update model before training.' % bpr
|
65 |
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
def make_divisible(x, divisor):
|
68 |
# Returns x evenly divisble by divisor
|
69 |
return math.ceil(x / divisor) * divisor
|
|
|
64 |
'Compute new anchors with utils.utils.kmeans_anchors() and update model before training.' % bpr
|
65 |
|
66 |
|
67 |
+
def check_file(file):
|
68 |
+
# Searches for file if not found locally
|
69 |
+
if os.path.isfile(file):
|
70 |
+
return file
|
71 |
+
else:
|
72 |
+
files = glob.glob('./**/' + file, recursive=True) # find file
|
73 |
+
assert len(files), 'File Not Found: %s' % file # assert file was found
|
74 |
+
return files[0] # return first file if multiple found
|
75 |
+
|
76 |
+
|
77 |
def make_divisible(x, divisor):
|
78 |
# Returns x evenly divisble by divisor
|
79 |
return math.ceil(x / divisor) * divisor
|