Commit
·
d3f9bf2
1
Parent(s):
901243c
Update datasets.py
Browse files- utils/datasets.py +18 -25
utils/datasets.py
CHANGED
@@ -62,26 +62,25 @@ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=Fa
|
|
62 |
|
63 |
batch_size = min(batch_size, len(dataset))
|
64 |
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
|
65 |
-
|
66 |
-
dataloader = InfiniteDataLoader
|
67 |
batch_size=batch_size,
|
68 |
num_workers=nw,
|
69 |
-
sampler=
|
70 |
pin_memory=True,
|
71 |
collate_fn=LoadImagesAndLabels.collate_fn)
|
72 |
return dataloader, dataset
|
73 |
|
74 |
|
75 |
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
|
76 |
-
|
77 |
-
Dataloader that reuses workers.
|
78 |
|
79 |
Uses same syntax as vanilla DataLoader.
|
80 |
-
|
81 |
|
82 |
def __init__(self, *args, **kwargs):
|
83 |
super().__init__(*args, **kwargs)
|
84 |
-
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
85 |
self.iterator = super().__iter__()
|
86 |
|
87 |
def __len__(self):
|
@@ -91,22 +90,20 @@ class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
|
|
91 |
for i in range(len(self)):
|
92 |
yield next(self.iterator)
|
93 |
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
'''
|
102 |
|
103 |
-
|
104 |
-
|
|
|
105 |
|
106 |
-
def __iter__(self):
|
107 |
-
while True:
|
108 |
-
yield from iter(self.sampler)
|
109 |
-
|
110 |
|
111 |
class LoadImages: # for inference
|
112 |
def __init__(self, path, img_size=640):
|
@@ -684,14 +681,10 @@ def load_mosaic(self, index):
|
|
684 |
# Concat/clip labels
|
685 |
if len(labels4):
|
686 |
labels4 = np.concatenate(labels4, 0)
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
# Replicate
|
691 |
-
# img4, labels4 = replicate(img4, labels4)
|
692 |
|
693 |
# Augment
|
694 |
-
# img4 = img4[s // 2: int(s * 1.5), s // 2:int(s * 1.5)] # center crop (WARNING, requires box pruning)
|
695 |
img4, labels4 = random_perspective(img4, labels4,
|
696 |
degrees=self.hyp['degrees'],
|
697 |
translate=self.hyp['translate'],
|
|
|
62 |
|
63 |
batch_size = min(batch_size, len(dataset))
|
64 |
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
|
65 |
+
sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
|
66 |
+
dataloader = InfiniteDataLoader(dataset,
|
67 |
batch_size=batch_size,
|
68 |
num_workers=nw,
|
69 |
+
sampler=sampler,
|
70 |
pin_memory=True,
|
71 |
collate_fn=LoadImagesAndLabels.collate_fn)
|
72 |
return dataloader, dataset
|
73 |
|
74 |
|
75 |
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
|
76 |
+
""" Dataloader that reuses workers.
|
|
|
77 |
|
78 |
Uses same syntax as vanilla DataLoader.
|
79 |
+
"""
|
80 |
|
81 |
def __init__(self, *args, **kwargs):
|
82 |
super().__init__(*args, **kwargs)
|
83 |
+
object.__setattr__(self, 'batch_sampler', self._RepeatSampler(self.batch_sampler))
|
84 |
self.iterator = super().__iter__()
|
85 |
|
86 |
def __len__(self):
|
|
|
90 |
for i in range(len(self)):
|
91 |
yield next(self.iterator)
|
92 |
|
93 |
+
class _RepeatSampler(object):
|
94 |
+
""" Sampler that repeats forever.
|
95 |
|
96 |
+
Args:
|
97 |
+
sampler (Sampler)
|
98 |
+
"""
|
99 |
|
100 |
+
def __init__(self, sampler):
|
101 |
+
self.sampler = sampler
|
|
|
102 |
|
103 |
+
def __iter__(self):
|
104 |
+
while True:
|
105 |
+
yield from iter(self.sampler)
|
106 |
|
|
|
|
|
|
|
|
|
107 |
|
108 |
class LoadImages: # for inference
|
109 |
def __init__(self, path, img_size=640):
|
|
|
681 |
# Concat/clip labels
|
682 |
if len(labels4):
|
683 |
labels4 = np.concatenate(labels4, 0)
|
684 |
+
np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_perspective
|
685 |
+
# img4, labels4 = replicate(img4, labels4) # replicate
|
|
|
|
|
|
|
686 |
|
687 |
# Augment
|
|
|
688 |
img4, labels4 = random_perspective(img4, labels4,
|
689 |
degrees=self.hyp['degrees'],
|
690 |
translate=self.hyp['translate'],
|