glenn-jocher commited on
Commit
d856c48
·
unverified ·
1 Parent(s): e687873

Validate `best.pt` on train end (#4889)

Browse files

* Validate best.pt on train end

* 0.7 iou for COCO only

* pass callbacks

* active model.float() if not half

* print Validating best.pt...

* add newline

Files changed (2) hide show
  1. train.py +13 -14
  2. val.py +1 -2
train.py CHANGED
@@ -356,9 +356,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
356
  single_cls=single_cls,
357
  dataloader=val_loader,
358
  save_dir=save_dir,
359
- save_json=is_coco and final_epoch,
360
- verbose=nc < 50 and final_epoch,
361
- plots=plots and final_epoch,
362
  callbacks=callbacks,
363
  compute_loss=compute_loss)
364
 
@@ -404,23 +402,24 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
404
  # end training -----------------------------------------------------------------------------------------------------
405
  if RANK in [-1, 0]:
406
  LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
407
- if not evolve:
408
- if is_coco: # COCO dataset
409
- for m in [last, best] if best.exists() else [last]: # speed, mAP tests
 
 
410
  results, _, _ = val.run(data_dict,
411
  batch_size=batch_size // WORLD_SIZE * 2,
412
  imgsz=imgsz,
413
- model=attempt_load(m, device).half(),
414
- iou_thres=0.7, # NMS IoU threshold for best pycocotools results
415
  single_cls=single_cls,
416
  dataloader=val_loader,
417
  save_dir=save_dir,
418
- save_json=True,
419
- plots=False)
420
- # Strip optimizers
421
- for f in last, best:
422
- if f.exists():
423
- strip_optimizer(f) # strip optimizers
424
  callbacks.run('on_train_end', last, best, plots, epoch)
425
  LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
426
 
 
356
  single_cls=single_cls,
357
  dataloader=val_loader,
358
  save_dir=save_dir,
359
+ plots=False,
 
 
360
  callbacks=callbacks,
361
  compute_loss=compute_loss)
362
 
 
402
  # end training -----------------------------------------------------------------------------------------------------
403
  if RANK in [-1, 0]:
404
  LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
405
+ for f in last, best:
406
+ if f.exists():
407
+ strip_optimizer(f) # strip optimizers
408
+ if f is best:
409
+ LOGGER.info(f'\nValidating {f}...')
410
  results, _, _ = val.run(data_dict,
411
  batch_size=batch_size // WORLD_SIZE * 2,
412
  imgsz=imgsz,
413
+ model=attempt_load(f, device).half(),
414
+ iou_thres=0.7 if is_coco else 0.6, # best pycocotools results at 0.7
415
  single_cls=single_cls,
416
  dataloader=val_loader,
417
  save_dir=save_dir,
418
+ save_json=is_coco,
419
+ verbose=True,
420
+ plots=True,
421
+ callbacks=callbacks) # val best model with plots
422
+
 
423
  callbacks.run('on_train_end', last, best, plots, epoch)
424
  LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
425
 
val.py CHANGED
@@ -133,8 +133,7 @@ def run(data,
133
 
134
  # Half
135
  half &= device.type != 'cpu' # half precision only supported on CUDA
136
- if half:
137
- model.half()
138
 
139
  # Configure
140
  model.eval()
 
133
 
134
  # Half
135
  half &= device.type != 'cpu' # half precision only supported on CUDA
136
+ model.half() if half else model.float()
 
137
 
138
  # Configure
139
  model.eval()