Commit
·
d989bc9
1
Parent(s):
023e378
remove NBSP
Browse files- models/yolo.py +2 -2
- utils/utils.py +2 -2
models/yolo.py
CHANGED
@@ -127,7 +127,7 @@ class Model(nn.Module):
|
|
127 |
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
128 |
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
129 |
m = self.model[-1] # Detect() module
|
130 |
-
for mi, s in zip(m.m, m.stride): #
|
131 |
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
132 |
b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
133 |
b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
@@ -135,7 +135,7 @@ class Model(nn.Module):
|
|
135 |
|
136 |
def _print_biases(self):
|
137 |
m = self.model[-1] # Detect() module
|
138 |
-
for mi in m.m: #
|
139 |
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
140 |
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
141 |
|
|
|
127 |
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
128 |
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
129 |
m = self.model[-1] # Detect() module
|
130 |
+
for mi, s in zip(m.m, m.stride): # from
|
131 |
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
132 |
b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
133 |
b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
|
|
135 |
|
136 |
def _print_biases(self):
|
137 |
m = self.model[-1] # Detect() module
|
138 |
+
for mi in m.m: # from
|
139 |
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
140 |
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
141 |
|
utils/utils.py
CHANGED
@@ -21,7 +21,7 @@ import yaml
|
|
21 |
from scipy.signal import butter, filtfilt
|
22 |
from tqdm import tqdm
|
23 |
|
24 |
-
from . import torch_utils #
|
25 |
|
26 |
# Set printoptions
|
27 |
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
@@ -84,7 +84,7 @@ def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
|
84 |
r = wh[:, None] / k[None]
|
85 |
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
86 |
best = x.max(1)[0] # best_x
|
87 |
-
return (best > 1. / thr).float().mean() #
|
88 |
|
89 |
bpr = metric(m.anchor_grid.clone().cpu().view(-1, 2))
|
90 |
print('Best Possible Recall (BPR) = %.4f' % bpr, end='')
|
|
|
21 |
from scipy.signal import butter, filtfilt
|
22 |
from tqdm import tqdm
|
23 |
|
24 |
+
from . import torch_utils # torch_utils, google_utils
|
25 |
|
26 |
# Set printoptions
|
27 |
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
|
|
84 |
r = wh[:, None] / k[None]
|
85 |
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
86 |
best = x.max(1)[0] # best_x
|
87 |
+
return (best > 1. / thr).float().mean() # best possible recall
|
88 |
|
89 |
bpr = metric(m.anchor_grid.clone().cpu().view(-1, 2))
|
90 |
print('Best Possible Recall (BPR) = %.4f' % bpr, end='')
|