Create `Annotator()` class (#4591)
Browse files* Add Annotator() class
* Download Arial
* 2x for loop
* Cleanup
* tuple 2 list
* max_size=1920
* bold logging results to
* tolist()
* im = annotator.im
* PIL save in detect.py
* Smart asarray in detect.py
* revert to cv2.imwrite
* Cleanup
* Return result asarray
* Add `Profile()` profiler
* CamelCase Timeout
* Resize after mosaic
* pillow>=8.0.0
* daemon imwrite
* Add cv2 support
* Remove plot_wh_methods and plot_one_box
* pil=False for hubconf.py annotations
* im.shape bug fix
* colorstr common.py
* join daemons
* Update t.daemon
* Removed daemon saving
- detect.py +4 -2
- models/common.py +7 -4
- requirements.txt +1 -1
- train.py +1 -1
- utils/general.py +3 -2
- utils/plots.py +90 -99
detect.py
CHANGED
@@ -23,7 +23,7 @@ from models.experimental import attempt_load
|
|
23 |
from utils.datasets import LoadStreams, LoadImages
|
24 |
from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \
|
25 |
apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
|
26 |
-
from utils.plots import colors,
|
27 |
from utils.torch_utils import select_device, load_classifier, time_sync
|
28 |
|
29 |
|
@@ -181,6 +181,7 @@ def run(weights='yolov5s.pt', # model.pt path(s)
|
|
181 |
s += '%gx%g ' % img.shape[2:] # print string
|
182 |
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
183 |
imc = im0.copy() if save_crop else im0 # for save_crop
|
|
|
184 |
if len(det):
|
185 |
# Rescale boxes from img_size to im0 size
|
186 |
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
@@ -201,7 +202,7 @@ def run(weights='yolov5s.pt', # model.pt path(s)
|
|
201 |
if save_img or save_crop or view_img: # Add bbox to image
|
202 |
c = int(cls) # integer class
|
203 |
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
204 |
-
|
205 |
if save_crop:
|
206 |
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
207 |
|
@@ -209,6 +210,7 @@ def run(weights='yolov5s.pt', # model.pt path(s)
|
|
209 |
print(f'{s}Done. ({t2 - t1:.3f}s)')
|
210 |
|
211 |
# Stream results
|
|
|
212 |
if view_img:
|
213 |
cv2.imshow(str(p), im0)
|
214 |
cv2.waitKey(1) # 1 millisecond
|
|
|
23 |
from utils.datasets import LoadStreams, LoadImages
|
24 |
from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \
|
25 |
apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
|
26 |
+
from utils.plots import colors, Annotator
|
27 |
from utils.torch_utils import select_device, load_classifier, time_sync
|
28 |
|
29 |
|
|
|
181 |
s += '%gx%g ' % img.shape[2:] # print string
|
182 |
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
183 |
imc = im0.copy() if save_crop else im0 # for save_crop
|
184 |
+
annotator = Annotator(im0, line_width=line_thickness, pil=False)
|
185 |
if len(det):
|
186 |
# Rescale boxes from img_size to im0 size
|
187 |
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
|
|
202 |
if save_img or save_crop or view_img: # Add bbox to image
|
203 |
c = int(cls) # integer class
|
204 |
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
205 |
+
annotator.box_label(xyxy, label, color=colors(c, True))
|
206 |
if save_crop:
|
207 |
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
208 |
|
|
|
210 |
print(f'{s}Done. ({t2 - t1:.3f}s)')
|
211 |
|
212 |
# Stream results
|
213 |
+
im0 = annotator.result()
|
214 |
if view_img:
|
215 |
cv2.imshow(str(p), im0)
|
216 |
cv2.waitKey(1) # 1 millisecond
|
models/common.py
CHANGED
@@ -18,8 +18,9 @@ from PIL import Image
|
|
18 |
from torch.cuda import amp
|
19 |
|
20 |
from utils.datasets import exif_transpose, letterbox
|
21 |
-
from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh,
|
22 |
-
|
|
|
23 |
from utils.torch_utils import time_sync
|
24 |
|
25 |
LOGGER = logging.getLogger(__name__)
|
@@ -370,12 +371,14 @@ class Detections:
|
|
370 |
n = (pred[:, -1] == c).sum() # detections per class
|
371 |
str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
372 |
if show or save or render or crop:
|
|
|
373 |
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
374 |
label = f'{self.names[int(cls)]} {conf:.2f}'
|
375 |
if crop:
|
376 |
save_one_box(box, im, file=save_dir / 'crops' / self.names[int(cls)] / self.files[i])
|
377 |
else: # all others
|
378 |
-
|
|
|
379 |
else:
|
380 |
str += '(no detections)'
|
381 |
|
@@ -388,7 +391,7 @@ class Detections:
|
|
388 |
f = self.files[i]
|
389 |
im.save(save_dir / f) # save
|
390 |
if i == self.n - 1:
|
391 |
-
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to '
|
392 |
if render:
|
393 |
self.imgs[i] = np.asarray(im)
|
394 |
|
|
|
18 |
from torch.cuda import amp
|
19 |
|
20 |
from utils.datasets import exif_transpose, letterbox
|
21 |
+
from utils.general import colorstr, non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh, \
|
22 |
+
save_one_box
|
23 |
+
from utils.plots import colors, Annotator
|
24 |
from utils.torch_utils import time_sync
|
25 |
|
26 |
LOGGER = logging.getLogger(__name__)
|
|
|
371 |
n = (pred[:, -1] == c).sum() # detections per class
|
372 |
str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
373 |
if show or save or render or crop:
|
374 |
+
annotator = Annotator(im, pil=False)
|
375 |
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
376 |
label = f'{self.names[int(cls)]} {conf:.2f}'
|
377 |
if crop:
|
378 |
save_one_box(box, im, file=save_dir / 'crops' / self.names[int(cls)] / self.files[i])
|
379 |
else: # all others
|
380 |
+
annotator.box_label(box, label, color=colors(cls))
|
381 |
+
im = annotator.im
|
382 |
else:
|
383 |
str += '(no detections)'
|
384 |
|
|
|
391 |
f = self.files[i]
|
392 |
im.save(save_dir / f) # save
|
393 |
if i == self.n - 1:
|
394 |
+
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
395 |
if render:
|
396 |
self.imgs[i] = np.asarray(im)
|
397 |
|
requirements.txt
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
matplotlib>=3.2.2
|
5 |
numpy>=1.18.5
|
6 |
opencv-python>=4.1.2
|
7 |
-
Pillow
|
8 |
PyYAML>=5.3.1
|
9 |
scipy>=1.4.1
|
10 |
torch>=1.7.0
|
|
|
4 |
matplotlib>=3.2.2
|
5 |
numpy>=1.18.5
|
6 |
opencv-python>=4.1.2
|
7 |
+
Pillow>=8.0.0
|
8 |
PyYAML>=5.3.1
|
9 |
scipy>=1.4.1
|
10 |
torch>=1.7.0
|
train.py
CHANGED
@@ -260,7 +260,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|
260 |
compute_loss = ComputeLoss(model) # init loss class
|
261 |
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
|
262 |
f'Using {train_loader.num_workers} dataloader workers\n'
|
263 |
-
f
|
264 |
f'Starting training for {epochs} epochs...')
|
265 |
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
266 |
model.train()
|
|
|
260 |
compute_loss = ComputeLoss(model) # init loss class
|
261 |
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
|
262 |
f'Using {train_loader.num_workers} dataloader workers\n'
|
263 |
+
f"Logging results to {colorstr('bold', save_dir)}\n"
|
264 |
f'Starting training for {epochs} epochs...')
|
265 |
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
266 |
model.train()
|
utils/general.py
CHANGED
@@ -122,9 +122,10 @@ def is_pip():
|
|
122 |
return 'site-packages' in Path(__file__).absolute().parts
|
123 |
|
124 |
|
125 |
-
def is_ascii(
|
126 |
# Is string composed of all ASCII (no UTF) characters?
|
127 |
-
|
|
|
128 |
|
129 |
|
130 |
def emojis(str=''):
|
|
|
122 |
return 'site-packages' in Path(__file__).absolute().parts
|
123 |
|
124 |
|
125 |
+
def is_ascii(s=''):
|
126 |
# Is string composed of all ASCII (no UTF) characters?
|
127 |
+
s = str(s) # convert to str() in case of None, etc.
|
128 |
+
return len(s.encode().decode('ascii', 'ignore')) == len(s)
|
129 |
|
130 |
|
131 |
def emojis(str=''):
|
utils/plots.py
CHANGED
@@ -67,51 +67,59 @@ def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
|
|
67 |
return filtfilt(b, a, data) # forward-backward filter
|
68 |
|
69 |
|
70 |
-
|
71 |
-
#
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
|
117 |
def output_to_target(output):
|
@@ -123,82 +131,65 @@ def output_to_target(output):
|
|
123 |
return np.array(targets)
|
124 |
|
125 |
|
126 |
-
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=
|
127 |
# Plot image grid with labels
|
128 |
-
|
129 |
if isinstance(images, torch.Tensor):
|
130 |
images = images.cpu().float().numpy()
|
131 |
if isinstance(targets, torch.Tensor):
|
132 |
targets = targets.cpu().numpy()
|
133 |
-
|
134 |
-
# un-normalise
|
135 |
if np.max(images[0]) <= 1:
|
136 |
-
images *= 255
|
137 |
-
|
138 |
-
tl = 3 # line thickness
|
139 |
-
tf = max(tl - 1, 1) # font thickness
|
140 |
bs, _, h, w = images.shape # batch size, _, height, width
|
141 |
bs = min(bs, max_subplots) # limit plot images
|
142 |
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
143 |
|
144 |
-
#
|
145 |
-
scale_factor = max_size / max(h, w)
|
146 |
-
if scale_factor < 1:
|
147 |
-
h = math.ceil(scale_factor * h)
|
148 |
-
w = math.ceil(scale_factor * w)
|
149 |
-
|
150 |
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
151 |
-
for i,
|
152 |
if i == max_subplots: # if last batch has fewer images than we expect
|
153 |
break
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
if len(targets) > 0:
|
164 |
-
|
165 |
-
boxes = xywh2xyxy(
|
166 |
-
classes =
|
167 |
-
labels =
|
168 |
-
conf = None if labels else
|
169 |
|
170 |
if boxes.shape[1]:
|
171 |
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
172 |
boxes[[0, 2]] *= w # scale to pixels
|
173 |
boxes[[1, 3]] *= h
|
174 |
-
elif
|
175 |
-
boxes *=
|
176 |
-
boxes[[0, 2]] +=
|
177 |
-
boxes[[1, 3]] +=
|
178 |
-
for j, box in enumerate(boxes.T):
|
179 |
-
cls =
|
180 |
color = colors(cls)
|
181 |
cls = names[cls] if names else cls
|
182 |
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
183 |
-
label = '
|
184 |
-
|
185 |
-
|
186 |
-
# Draw image filename labels
|
187 |
-
if paths:
|
188 |
-
label = Path(paths[i]).name[:40] # trim to 40 char
|
189 |
-
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
190 |
-
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
|
191 |
-
lineType=cv2.LINE_AA)
|
192 |
-
|
193 |
-
# Image border
|
194 |
-
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
|
195 |
-
|
196 |
-
if fname:
|
197 |
-
r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
|
198 |
-
mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
|
199 |
-
# cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
|
200 |
-
Image.fromarray(mosaic).save(fname) # PIL save
|
201 |
-
return mosaic
|
202 |
|
203 |
|
204 |
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
|
|
|
67 |
return filtfilt(b, a, data) # forward-backward filter
|
68 |
|
69 |
|
70 |
+
class Annotator:
|
71 |
+
# YOLOv5 PIL Annotator class
|
72 |
+
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=True):
|
73 |
+
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.'
|
74 |
+
self.pil = pil
|
75 |
+
if self.pil: # use PIL
|
76 |
+
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
|
77 |
+
self.draw = ImageDraw.Draw(self.im)
|
78 |
+
s = sum(self.im.size) / 2 # mean shape
|
79 |
+
f = font_size or max(round(s * 0.035), 12)
|
80 |
+
try:
|
81 |
+
self.font = ImageFont.truetype(font, size=f)
|
82 |
+
except: # download TTF
|
83 |
+
url = "https://github.com/ultralytics/yolov5/releases/download/v1.0/" + font
|
84 |
+
torch.hub.download_url_to_file(url, font)
|
85 |
+
self.font = ImageFont.truetype(font, size=f)
|
86 |
+
self.fh = self.font.getsize('a')[1] - 3 # font height
|
87 |
+
else: # use cv2
|
88 |
+
self.im = im
|
89 |
+
s = sum(im.shape) / 2 # mean shape
|
90 |
+
self.lw = line_width or max(round(s * 0.003), 2) # line width
|
91 |
+
|
92 |
+
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
|
93 |
+
# Add one xyxy box to image with label
|
94 |
+
if self.pil or not is_ascii(label):
|
95 |
+
self.draw.rectangle(box, width=self.lw, outline=color) # box
|
96 |
+
if label:
|
97 |
+
w = self.font.getsize(label)[0] # text width
|
98 |
+
self.draw.rectangle([box[0], box[1] - self.fh, box[0] + w + 1, box[1] + 1], fill=color)
|
99 |
+
self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')
|
100 |
+
else: # cv2
|
101 |
+
c1, c2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
|
102 |
+
cv2.rectangle(self.im, c1, c2, color, thickness=self.lw, lineType=cv2.LINE_AA)
|
103 |
+
if label:
|
104 |
+
tf = max(self.lw - 1, 1) # font thickness
|
105 |
+
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0]
|
106 |
+
c2 = c1[0] + w, c1[1] - h - 3
|
107 |
+
cv2.rectangle(self.im, c1, c2, color, -1, cv2.LINE_AA) # filled
|
108 |
+
cv2.putText(self.im, label, (c1[0], c1[1] - 2), 0, self.lw / 3, txt_color, thickness=tf,
|
109 |
+
lineType=cv2.LINE_AA)
|
110 |
+
|
111 |
+
def rectangle(self, xy, fill=None, outline=None, width=1):
|
112 |
+
# Add rectangle to image (PIL-only)
|
113 |
+
self.draw.rectangle(xy, fill, outline, width)
|
114 |
+
|
115 |
+
def text(self, xy, text, txt_color=(255, 255, 255)):
|
116 |
+
# Add text to image (PIL-only)
|
117 |
+
w, h = self.font.getsize(text) # text width, height
|
118 |
+
self.draw.text((xy[0], xy[1] - h + 1), text, fill=txt_color, font=self.font)
|
119 |
+
|
120 |
+
def result(self):
|
121 |
+
# Return annotated image as array
|
122 |
+
return np.asarray(self.im)
|
123 |
|
124 |
|
125 |
def output_to_target(output):
|
|
|
131 |
return np.array(targets)
|
132 |
|
133 |
|
134 |
+
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=1920, max_subplots=16):
|
135 |
# Plot image grid with labels
|
|
|
136 |
if isinstance(images, torch.Tensor):
|
137 |
images = images.cpu().float().numpy()
|
138 |
if isinstance(targets, torch.Tensor):
|
139 |
targets = targets.cpu().numpy()
|
|
|
|
|
140 |
if np.max(images[0]) <= 1:
|
141 |
+
images *= 255.0 # de-normalise (optional)
|
|
|
|
|
|
|
142 |
bs, _, h, w = images.shape # batch size, _, height, width
|
143 |
bs = min(bs, max_subplots) # limit plot images
|
144 |
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
145 |
|
146 |
+
# Build Image
|
|
|
|
|
|
|
|
|
|
|
147 |
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
148 |
+
for i, im in enumerate(images):
|
149 |
if i == max_subplots: # if last batch has fewer images than we expect
|
150 |
break
|
151 |
+
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
152 |
+
im = im.transpose(1, 2, 0)
|
153 |
+
mosaic[y:y + h, x:x + w, :] = im
|
154 |
+
|
155 |
+
# Resize (optional)
|
156 |
+
scale = max_size / ns / max(h, w)
|
157 |
+
if scale < 1:
|
158 |
+
h = math.ceil(scale * h)
|
159 |
+
w = math.ceil(scale * w)
|
160 |
+
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
|
161 |
+
|
162 |
+
# Annotate
|
163 |
+
fs = int(h * ns * 0.02) # font size
|
164 |
+
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs)
|
165 |
+
for i in range(i + 1):
|
166 |
+
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
167 |
+
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
|
168 |
+
if paths:
|
169 |
+
annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
|
170 |
if len(targets) > 0:
|
171 |
+
ti = targets[targets[:, 0] == i] # image targets
|
172 |
+
boxes = xywh2xyxy(ti[:, 2:6]).T
|
173 |
+
classes = ti[:, 1].astype('int')
|
174 |
+
labels = ti.shape[1] == 6 # labels if no conf column
|
175 |
+
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
|
176 |
|
177 |
if boxes.shape[1]:
|
178 |
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
179 |
boxes[[0, 2]] *= w # scale to pixels
|
180 |
boxes[[1, 3]] *= h
|
181 |
+
elif scale < 1: # absolute coords need scale if image scales
|
182 |
+
boxes *= scale
|
183 |
+
boxes[[0, 2]] += x
|
184 |
+
boxes[[1, 3]] += y
|
185 |
+
for j, box in enumerate(boxes.T.tolist()):
|
186 |
+
cls = classes[j]
|
187 |
color = colors(cls)
|
188 |
cls = names[cls] if names else cls
|
189 |
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
190 |
+
label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
|
191 |
+
annotator.box_label(box, label, color=color)
|
192 |
+
annotator.im.save(fname) # save
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
|
195 |
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
|