Commit
·
ee8988b
1
Parent(s):
7a00a5e
datasets.py self.batch_shapes fix
Browse files- models/yolo.py +0 -1
- test.py +2 -2
- utils/datasets.py +1 -1
models/yolo.py
CHANGED
@@ -20,7 +20,6 @@ class Detect(nn.Module):
|
|
20 |
self.export = False # onnx export
|
21 |
|
22 |
def forward(self, x):
|
23 |
-
x = x.copy()
|
24 |
z = [] # inference output
|
25 |
self.training |= self.export
|
26 |
for i in range(self.nl):
|
|
|
20 |
self.export = False # onnx export
|
21 |
|
22 |
def forward(self, x):
|
|
|
23 |
z = [] # inference output
|
24 |
self.training |= self.export
|
25 |
for i in range(self.nl):
|
test.py
CHANGED
@@ -244,7 +244,7 @@ if __name__ == '__main__':
|
|
244 |
print(opt)
|
245 |
|
246 |
# task = 'val', 'test', 'study'
|
247 |
-
if opt.task
|
248 |
test(opt.data,
|
249 |
opt.weights,
|
250 |
opt.batch_size,
|
@@ -258,7 +258,7 @@ if __name__ == '__main__':
|
|
258 |
elif opt.task == 'study': # run over a range of settings and save/plot
|
259 |
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
|
260 |
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
|
261 |
-
x = list(range(256, 1024,
|
262 |
y = [] # y axis
|
263 |
for i in x: # img-size
|
264 |
print('\nRunning %s point %s...' % (f, i))
|
|
|
244 |
print(opt)
|
245 |
|
246 |
# task = 'val', 'test', 'study'
|
247 |
+
if opt.task in ['val', 'test']: # (default) run normally
|
248 |
test(opt.data,
|
249 |
opt.weights,
|
250 |
opt.batch_size,
|
|
|
258 |
elif opt.task == 'study': # run over a range of settings and save/plot
|
259 |
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
|
260 |
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
|
261 |
+
x = list(range(256, 1024, 64)) # x axis
|
262 |
y = [] # y axis
|
263 |
for i in x: # img-size
|
264 |
print('\nRunning %s point %s...' % (f, i))
|
utils/datasets.py
CHANGED
@@ -322,7 +322,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|
322 |
elif mini > 1:
|
323 |
shapes[i] = [1, 1 / mini]
|
324 |
|
325 |
-
self.batch_shapes = np.
|
326 |
|
327 |
# Cache labels
|
328 |
self.imgs = [None] * n
|
|
|
322 |
elif mini > 1:
|
323 |
shapes[i] = [1, 1 / mini]
|
324 |
|
325 |
+
self.batch_shapes = np.round(np.array(shapes) * img_size / 32. + 1.).astype(np.int) * 32
|
326 |
|
327 |
# Cache labels
|
328 |
self.imgs = [None] * n
|