Add Kaggle badge (#2090)
Browse files* Update README.md
* Update greetings.yml
* Created using Colaboratory
- .github/workflows/greetings.yml +3 -3
- README.md +2 -3
- tutorial.ipynb +24 -12
.github/workflows/greetings.yml
CHANGED
@@ -42,11 +42,11 @@ jobs:
|
|
42 |
|
43 |
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
44 |
|
45 |
-
- **Google Colab
|
46 |
-
- **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
|
47 |
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
|
48 |
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
|
49 |
-
- **Docker Image
|
|
|
50 |
|
51 |
## Status
|
52 |
|
|
|
42 |
|
43 |
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
44 |
|
45 |
+
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
|
|
46 |
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
|
47 |
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
|
48 |
+
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
49 |
+
|
50 |
|
51 |
## Status
|
52 |
|
README.md
CHANGED
@@ -65,11 +65,10 @@ $ pip install -r requirements.txt
|
|
65 |
|
66 |
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
67 |
|
68 |
-
- **Google Colab
|
69 |
-
- **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
|
70 |
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
|
71 |
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
|
72 |
-
- **Docker Image
|
73 |
|
74 |
|
75 |
## Inference
|
|
|
65 |
|
66 |
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
67 |
|
68 |
+
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
|
|
69 |
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
|
70 |
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
|
71 |
+
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
72 |
|
73 |
|
74 |
## Inference
|
tutorial.ipynb
CHANGED
@@ -517,7 +517,7 @@
|
|
517 |
"colab_type": "text"
|
518 |
},
|
519 |
"source": [
|
520 |
-
"<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/
|
521 |
]
|
522 |
},
|
523 |
{
|
@@ -563,7 +563,7 @@
|
|
563 |
"clear_output()\n",
|
564 |
"print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))"
|
565 |
],
|
566 |
-
"execution_count":
|
567 |
"outputs": [
|
568 |
{
|
569 |
"output_type": "stream",
|
@@ -689,7 +689,7 @@
|
|
689 |
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
|
690 |
"!unzip -q tmp.zip -d ../ && rm tmp.zip"
|
691 |
],
|
692 |
-
"execution_count":
|
693 |
"outputs": [
|
694 |
{
|
695 |
"output_type": "display_data",
|
@@ -729,7 +729,7 @@
|
|
729 |
"# Run YOLOv5x on COCO val2017\n",
|
730 |
"!python test.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65"
|
731 |
],
|
732 |
-
"execution_count":
|
733 |
"outputs": [
|
734 |
{
|
735 |
"output_type": "stream",
|
@@ -854,7 +854,7 @@
|
|
854 |
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip')\n",
|
855 |
"!unzip -q tmp.zip -d ../ && rm tmp.zip"
|
856 |
],
|
857 |
-
"execution_count":
|
858 |
"outputs": [
|
859 |
{
|
860 |
"output_type": "display_data",
|
@@ -931,7 +931,7 @@
|
|
931 |
"# Train YOLOv5s on COCO128 for 3 epochs\n",
|
932 |
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --nosave --cache"
|
933 |
],
|
934 |
-
"execution_count":
|
935 |
"outputs": [
|
936 |
{
|
937 |
"output_type": "stream",
|
@@ -1120,11 +1120,23 @@
|
|
1120 |
"\n",
|
1121 |
"YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
|
1122 |
"\n",
|
1123 |
-
"- **Google Colab
|
1124 |
-
"- **
|
1125 |
-
"- **
|
1126 |
-
"- **
|
1127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1128 |
]
|
1129 |
},
|
1130 |
{
|
@@ -1226,4 +1238,4 @@
|
|
1226 |
"outputs": []
|
1227 |
}
|
1228 |
]
|
1229 |
-
}
|
|
|
517 |
"colab_type": "text"
|
518 |
},
|
519 |
"source": [
|
520 |
+
"<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/kaggle/tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
521 |
]
|
522 |
},
|
523 |
{
|
|
|
563 |
"clear_output()\n",
|
564 |
"print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))"
|
565 |
],
|
566 |
+
"execution_count": null,
|
567 |
"outputs": [
|
568 |
{
|
569 |
"output_type": "stream",
|
|
|
689 |
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
|
690 |
"!unzip -q tmp.zip -d ../ && rm tmp.zip"
|
691 |
],
|
692 |
+
"execution_count": null,
|
693 |
"outputs": [
|
694 |
{
|
695 |
"output_type": "display_data",
|
|
|
729 |
"# Run YOLOv5x on COCO val2017\n",
|
730 |
"!python test.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65"
|
731 |
],
|
732 |
+
"execution_count": null,
|
733 |
"outputs": [
|
734 |
{
|
735 |
"output_type": "stream",
|
|
|
854 |
"torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', 'tmp.zip')\n",
|
855 |
"!unzip -q tmp.zip -d ../ && rm tmp.zip"
|
856 |
],
|
857 |
+
"execution_count": null,
|
858 |
"outputs": [
|
859 |
{
|
860 |
"output_type": "display_data",
|
|
|
931 |
"# Train YOLOv5s on COCO128 for 3 epochs\n",
|
932 |
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --nosave --cache"
|
933 |
],
|
934 |
+
"execution_count": null,
|
935 |
"outputs": [
|
936 |
{
|
937 |
"output_type": "stream",
|
|
|
1120 |
"\n",
|
1121 |
"YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
|
1122 |
"\n",
|
1123 |
+
"- **Google Colab and Kaggle** notebooks with free GPU: <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
|
1124 |
+
"- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n",
|
1125 |
+
"- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n",
|
1126 |
+
"- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
|
1127 |
+
]
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"cell_type": "markdown",
|
1131 |
+
"metadata": {
|
1132 |
+
"id": "6Qu7Iesl0p54"
|
1133 |
+
},
|
1134 |
+
"source": [
|
1135 |
+
"# Status\n",
|
1136 |
+
"\n",
|
1137 |
+
"\n",
|
1138 |
+
"\n",
|
1139 |
+
"If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/models/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
|
1140 |
]
|
1141 |
},
|
1142 |
{
|
|
|
1238 |
"outputs": []
|
1239 |
}
|
1240 |
]
|
1241 |
+
}
|