MatterGPT_CPU / app.py
xiaohang07's picture
Update app.py
b610a5a verified
raw
history blame
6.18 kB
import gradio as gr
import torch
from mattergpt_wrapper import MatterGPTWrapper, SimpleTokenizer
import os
from slices.core import SLICES
from pymatgen.core.structure import Structure
from pymatgen.io.cif import CifWriter
from pymatgen.io.ase import AseAtomsAdaptor
from ase.io import write as ase_write
import tempfile
import time
# 设置PyTorch使用的线程数
torch.set_num_threads(2)
def load_quantized_model(model_path):
model = MatterGPTWrapper.from_pretrained(model_path)
model.to('cpu')
model.eval()
quantized_model = torch.quantization.quantize_dynamic(
model, {torch.nn.Linear}, dtype=torch.qint8
)
return quantized_model
# Load and quantize the model
model_path = "./"
quantized_model = load_quantized_model(model_path)
quantized_model.to("cpu")
quantized_model.eval()
# Load the tokenizer
tokenizer_path = "Voc_prior"
tokenizer = SimpleTokenizer(tokenizer_path)
# Initialize SLICES backend
try:
backend = SLICES(relax_model="chgnet",fmax=0.4,steps=25)
except Exception as e:
backend = SLICES(relax_model=None)
def generate_slices_quantized(quantized_model, tokenizer, formation_energy, band_gap, max_length, temperature, do_sample, top_k, top_p):
condition = torch.tensor([[float(formation_energy), float(band_gap)]], dtype=torch.float32)
context = '>'
x = torch.tensor([[tokenizer.stoi[context]]], dtype=torch.long)
with torch.no_grad():
generated = quantized_model.generate(x, prop=condition, max_length=max_length,
temperature=temperature, do_sample=do_sample,
top_k=top_k, top_p=top_p)
return tokenizer.decode(generated[0].tolist())
def generate_slices(formation_energy, band_gap):
return generate_slices_quantized(quantized_model, tokenizer, formation_energy, band_gap,
quantized_model.config.block_size, 1.2, True, 0, 0.9)
def wrap_structure(structure):
"""Wrap all atoms back into the unit cell."""
for i, site in enumerate(structure):
frac_coords = site.frac_coords % 1.0
structure.replace(i, species=site.species, coords=frac_coords, coords_are_cartesian=False)
return structure
def convert_and_visualize(slices_string):
try:
structure, energy = backend.SLICES2structure(slices_string)
# Wrap atoms back into the unit cell
structure = wrap_structure(structure)
# Generate CIF and save to temporary file
cif_file = tempfile.NamedTemporaryFile(mode='w', suffix='.cif', delete=False)
cif_writer = CifWriter(structure)
cif_writer.write_file(cif_file.name)
# Generate structure summary
summary = f"Formula: {structure.composition.reduced_formula}\n"
summary += f"Number of sites: {len(structure)}\n"
summary += f"Lattice parameters: a={structure.lattice.a:.3f}, b={structure.lattice.b:.3f}, c={structure.lattice.c:.3f}\n"
summary += f"Angles: alpha={structure.lattice.alpha:.2f}, beta={structure.lattice.beta:.2f}, gamma={structure.lattice.gamma:.2f}\n"
summary += f"Volume: {structure.volume:.3f} ų\n"
summary += f"Density: {structure.density:.3f} g/cm³"
# Generate structure image using ASE and save to temporary file
atoms = AseAtomsAdaptor.get_atoms(structure)
image_file = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
ase_write(image_file.name, atoms, format='png', rotation='10x,10y,10z')
return cif_file.name, image_file.name, summary, f"Conversion successful. Energy: {energy:.4f} eV/atom", True
except Exception as e:
return "", "", "", f"Conversion failed. Error: {str(e)}", False
def generate_and_convert(formation_energy, band_gap):
max_attempts = 5
start_time = time.time()
max_time = 300 # 5 minutes maximum execution time
for attempt in range(max_attempts):
if time.time() - start_time > max_time:
return "Exceeded maximum execution time", "", "", "", "Generation and conversion failed due to timeout"
slices_string = generate_slices(formation_energy, band_gap)
cif_file, image_file, structure_summary, status, success = convert_and_visualize(slices_string)
if success:
return slices_string, cif_file, image_file, structure_summary, f"Successful on attempt {attempt + 1}: {status}"
if attempt == max_attempts - 1:
return slices_string, "", "", "", f"Failed after {max_attempts} attempts: {status}"
return "Failed to generate valid SLICES string", "", "", "", "Generation failed"
# Create the Gradio interface
with gr.Blocks() as iface:
gr.Markdown("# Crystal Inverse Designer: From Properties to Structures")
with gr.Row():
with gr.Column():
gr.Image("Figure1.png", label="De novo crystal generation by MatterGPT targeting desired Eg, Ef", width=1000, height=300)
gr.Markdown("**Enter desired properties to inversely design materials (encoded in SLICES), then decode it into crystal structure.**")
gr.Markdown("**Allow 1-2 minutes for completion using 2 CPUs.**")
with gr.Row():
with gr.Column(scale=2):
band_gap = gr.Number(label="Band Gap (eV)", value=2.0)
formation_energy = gr.Number(label="Formation Energy (eV/atom)", value=-1.0)
generate_button = gr.Button("Generate")
with gr.Column(scale=3):
slices_output = gr.Textbox(label="Generated SLICES String")
cif_output = gr.File(label="Download CIF", file_types=[".cif"])
structure_image = gr.Image(label="Structure Visualization")
structure_summary = gr.Textbox(label="Structure Summary", lines=6)
conversion_status = gr.Textbox(label="Conversion Status")
generate_button.click(
generate_and_convert,
inputs=[formation_energy, band_gap],
outputs=[slices_output, cif_output, structure_image, structure_summary, conversion_status]
)
iface.launch(share=True)