Spaces:
Running
Running
import torch | |
from torch import nn | |
from transformers import PreTrainedModel, PretrainedConfig | |
from model import GPT, GPTConfig # Import your original model and config classes | |
import json | |
class CustomGPTConfig(PretrainedConfig): | |
model_type = "gpt" | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
for key, value in kwargs.items(): | |
setattr(self, key, value) | |
class MatterGPTWrapper(PreTrainedModel): | |
config_class = CustomGPTConfig | |
base_model_prefix = "gpt" | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = GPT(GPTConfig(**config.__dict__)) | |
def forward(self, input_ids, attention_mask=None, labels=None, prop=None): | |
return self.model(input_ids, targets=labels, prop=prop) | |
def generate(self, input_ids, prop, max_length, num_return_sequences=1, **kwargs): | |
steps = max_length - input_ids.shape[1] | |
return self.model.sample(input_ids, steps, prop=prop, **kwargs) | |
def from_pretrained(cls, pretrained_model_path, *model_args, **kwargs): | |
config_file = f"{pretrained_model_path}/config.json" | |
with open(config_file, 'r') as f: | |
config_dict = json.load(f) | |
config = CustomGPTConfig(**config_dict) | |
model = cls(config) | |
# 加载模型权重 | |
state_dict = torch.load(f"{pretrained_model_path}/pytorch_model.pt", map_location="cpu") | |
model.model.load_state_dict(state_dict) | |
return model | |
def save_pretrained(self, save_directory): | |
self.config.save_pretrained(save_directory) | |
torch.save(self.model.state_dict(), f"{save_directory}/pytorch_model.pt") | |
class SimpleTokenizer: | |
def __init__(self, vocab_file): | |
with open(vocab_file, 'r') as f: | |
self.vocab = f.read().splitlines() | |
self.vocab = sorted(set(self.vocab + ['<', '>'])) | |
self.stoi = {ch: i for i, ch in enumerate(self.vocab)} | |
self.itos = {i: ch for i, ch in enumerate(self.vocab)} | |
def encode(self, text): | |
return [self.stoi[token] for token in text.split()] | |
def decode(self, ids): | |
return " ".join([self.itos[int(i)] for i in ids if i in self.itos]).replace("<", "").strip() | |
def __call__(self, text, return_tensors=None): | |
encoded = self.encode(text) | |
if return_tensors == 'pt': | |
import torch | |
return {'input_ids': torch.tensor([encoded])} | |
return {'input_ids': [encoded]} |