import gradio as gr import torch from mattergpt_wrapper import MatterGPTWrapper, SimpleTokenizer import os from slices.core import SLICES from pymatgen.core.structure import Structure from pymatgen.io.cif import CifWriter from pymatgen.io.ase import AseAtomsAdaptor from ase.io import write as ase_write import tempfile import time # 设置PyTorch使用的线程数 torch.set_num_threads(2) def load_quantized_model(model_path): model = MatterGPTWrapper.from_pretrained(model_path) model.to('cpu') model.eval() quantized_model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear}, dtype=torch.qint8 ) return quantized_model # Load and quantize the model model_path = "./" quantized_model = load_quantized_model(model_path) quantized_model.to("cpu") quantized_model.eval() # Load the tokenizer tokenizer_path = "Voc_prior" tokenizer = SimpleTokenizer(tokenizer_path) # Initialize SLICES backend try: backend = SLICES(relax_model="chgnet",fmax=0.4,steps=25) except Exception as e: backend = SLICES(relax_model=None) def generate_slices_quantized(quantized_model, tokenizer, formation_energy, band_gap, max_length, temperature, do_sample, top_k, top_p): condition = torch.tensor([[float(formation_energy), float(band_gap)]], dtype=torch.float32) context = '>' x = torch.tensor([[tokenizer.stoi[context]]], dtype=torch.long) with torch.no_grad(): generated = quantized_model.generate(x, prop=condition, max_length=max_length, temperature=temperature, do_sample=do_sample, top_k=top_k, top_p=top_p) return tokenizer.decode(generated[0].tolist()) def generate_slices(formation_energy, band_gap): return generate_slices_quantized(quantized_model, tokenizer, formation_energy, band_gap, quantized_model.config.block_size, 1.2, True, 0, 0.9) def wrap_structure(structure): """Wrap all atoms back into the unit cell.""" for i, site in enumerate(structure): frac_coords = site.frac_coords % 1.0 structure.replace(i, species=site.species, coords=frac_coords, coords_are_cartesian=False) return structure def convert_and_visualize(slices_string): try: structure, energy = backend.SLICES2structure(slices_string) # Wrap atoms back into the unit cell structure = wrap_structure(structure) # Generate CIF and save to temporary file cif_file = tempfile.NamedTemporaryFile(mode='w', suffix='.cif', delete=False) cif_writer = CifWriter(structure) cif_writer.write_file(cif_file.name) # Generate structure summary summary = f"Formula: {structure.composition.reduced_formula}\n" summary += f"Number of sites: {len(structure)}\n" summary += f"Lattice parameters: a={structure.lattice.a:.3f}, b={structure.lattice.b:.3f}, c={structure.lattice.c:.3f}\n" summary += f"Angles: alpha={structure.lattice.alpha:.2f}, beta={structure.lattice.beta:.2f}, gamma={structure.lattice.gamma:.2f}\n" summary += f"Volume: {structure.volume:.3f} ų\n" summary += f"Density: {structure.density:.3f} g/cm³" # Generate structure image using ASE and save to temporary file atoms = AseAtomsAdaptor.get_atoms(structure) image_file = tempfile.NamedTemporaryFile(suffix='.png', delete=False) ase_write(image_file.name, atoms, format='png', rotation='10x,10y,10z') return cif_file.name, image_file.name, summary, f"Conversion successful. Energy: {energy:.4f} eV/atom", True except Exception as e: return "", "", "", f"Conversion failed. Error: {str(e)}", False def generate_and_convert(formation_energy, band_gap): max_attempts = 5 start_time = time.time() max_time = 300 # 5 minutes maximum execution time for attempt in range(max_attempts): if time.time() - start_time > max_time: return "Exceeded maximum execution time", "", "", "", "Generation and conversion failed due to timeout" slices_string = generate_slices(formation_energy, band_gap) cif_file, image_file, structure_summary, status, success = convert_and_visualize(slices_string) if success: return slices_string, cif_file, image_file, structure_summary, f"Successful on attempt {attempt + 1}: {status}" if attempt == max_attempts - 1: return slices_string, "", "", "", f"Failed after {max_attempts} attempts: {status}" return "Failed to generate valid SLICES string", "", "", "", "Generation failed" # Create the Gradio interface with gr.Blocks() as iface: gr.Markdown("# Crystal Inverse Designer: From Properties to Structures") with gr.Row(): with gr.Column(): gr.Image("Figure1.png", label="De novo crystal generation by MatterGPT targeting desired Eg, Ef", width=1000, height=300) gr.Markdown("**Enter desired properties to inversely design materials (encoded in SLICES), then decode it into crystal structure.**") gr.Markdown("**Allow 1-2 minutes for completion using 2 CPUs.**") with gr.Row(): with gr.Column(scale=2): band_gap = gr.Number(label="Band Gap (eV)", value=2.0) formation_energy = gr.Number(label="Formation Energy (eV/atom)", value=-1.0) generate_button = gr.Button("Generate") with gr.Column(scale=3): slices_output = gr.Textbox(label="Generated SLICES String") cif_output = gr.File(label="Download CIF", file_types=[".cif"]) structure_image = gr.Image(label="Structure Visualization") structure_summary = gr.Textbox(label="Structure Summary", lines=6) conversion_status = gr.Textbox(label="Conversion Status") generate_button.click( generate_and_convert, inputs=[formation_energy, band_gap], outputs=[slices_output, cif_output, structure_image, structure_summary, conversion_status] ) iface.launch(share=True)