#导入gradio import gradio as gr #导入transformers相关包 from transformers import * # import webbrowser # # 打开指定的URL # webbrowser.open('http://127.0.0.1:7860') #通过Interface加载pipeline并启动服务 gr.Interface.from_pipeline( pipeline("image-to-text",model="Salesforce/blip-image-captioning-base")).launch(share=True) # import numpy as np # import gradio as gr # def flip_text(x): # return x[::-1] # def flip_image(x): # return np.fliplr(x) # with gr.Blocks() as demo: # gr.Markdown("Flip text or image files using this demo.") # with gr.Tab("Flip Text"): # text_input = gr.Textbox() # text_output = gr.Textbox() # text_button = gr.Button("Flip") # with gr.Tab("Flip Image"): # with gr.Row(): # image_input = gr.Image() # image_output = gr.Image() # image_button = gr.Button("Flip") # with gr.Accordion("Open for More!"): # gr.Markdown("Look at me...") # text_button.click(flip_text, inputs=text_input, outputs=text_output) # image_button.click(flip_image, inputs=image_input, outputs=image_output) # demo.launch(share=True)