Spaces:
Runtime error
Runtime error
File size: 7,204 Bytes
c24d39e d5a4886 3ebf54f d5a4886 c24d39e d5a4886 3ebf54f d5a4886 3ebf54f d5a4886 c24d39e d5a4886 89d1722 d5a4886 c24d39e d5a4886 c24d39e d5a4886 3ebf54f c24d39e 3ebf54f c24d39e 3ebf54f d5a4886 c24d39e d5a4886 c24d39e d5a4886 c24d39e d5a4886 c24d39e d5a4886 c24d39e d5a4886 c24d39e d5a4886 c24d39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import pathlib
import torch
import torch.hub
from torchvision.transforms.functional import convert_image_dtype
from torchvision.io.image import ImageReadMode, encode_png, decode_image
from PIL import Image
import PIL
from mcquic import Config
from mcquic.modules.compressor import BaseCompressor, Compressor
from mcquic.datasets.transforms import AlignedCrop
from mcquic.utils.specification import File
from mcquic.utils.vision import DeTransform
try:
import streamlit as st
except:
raise ImportError("To run `mcquic service`, please install Streamlit by `pip install streamlit` firstly.")
MODELS_URL = "https://github.com/xiaosu-zhu/McQuic/releases/download/generic/qp_3_msssim_fcc58b73.mcquic"
HF_SPACE = "HF_SPACE" in os.environ
@st.experimental_singleton
def loadModel(qp: int, local: pathlib.Path, device, mse: bool):
ckpt = torch.hub.load_state_dict_from_url(MODELS_URL, map_location=device, check_hash=True)
config = Config.deserialize(ckpt["config"])
model = Compressor(**config.Model.Params).to(device)
model.QuantizationParameter = str(local) if local is not None else str(qp)
model.load_state_dict(ckpt["model"])
return model
@st.cache
def compressImage(image: torch.Tensor, model: BaseCompressor, crop: bool) -> File:
image = convert_image_dtype(image)
if crop:
image = AlignedCrop()(image)
# [c, h, w]
image = (image - 0.5) * 2
with model._quantizer.readyForCoding() as cdfs:
codes, binaries, headers = model.compress(image[None, ...], cdfs)
return File(headers[0], binaries[0])
@st.cache
def decompressImage(sourceFile: File, model: BaseCompressor) -> torch.ByteTensor:
binaries = sourceFile.Content
with model._quantizer.readyForCoding() as cdfs:
# [1, c, h, w]
restored = model.decompress([binaries], cdfs, [sourceFile.FileHeader])
# [c, h, w]
return DeTransform()(restored[0])
def main(debug: bool, quiet: bool, qp: int, disable_gpu: bool):
if disable_gpu or not torch.cuda.is_available():
device = torch.device("cpu")
else:
device = torch.device("cuda")
model = loadModel(3, None, device, False).eval()
st.sidebar.markdown("""
<p align="center">
<a href="https://github.com/xiaosu-zhu/McQuic">
<img src="https://raw.githubusercontent.com/xiaosu-zhu/McQuic/main/assets/McQuic-light.svg" alt="McQuic" title="McQuic" width="45%"/>
</a>
<br/>
<span>
<i>a.k.a.</i> <b><i>M</i></b>ulti-<b><i>c</i></b>odebook <b><i>Qu</i></b>antizers for neural <b><i>i</i></b>mage <b><i>c</i></b>ompression
</span>
</p>
<p align="center">
Compressing images on-the-fly.
</p>
<image src="https://img.shields.io/badge/NOTE-yellow?style=for-the-badge" alt="NOTE"/>
> Due to resources limitation, I only provide compression service with model `qp = 3`.
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<a href="https://github.com/xiaosu-zhu/McQuic">
<image src="https://raw.githubusercontent.com/xiaosu-zhu/McQuic/main/assets/GitHub-Mark-120px-plus.png" alt="Github"/>
<image src="https://img.shields.io/github/stars/xiaosu-zhu/McQuic?style=social" alt="Github"/>
</a>
""", unsafe_allow_html=True)
if HF_SPACE:
st.markdown("""
<image src="https://img.shields.io/badge/NOTE-yellow?style=for-the-badge" alt="NOTE"/>
> Due to resources limitation of HF spaces, the upload image size is restricted to lower than `3000 x 3000`.
<image src="https://img.shields.io/badge/NOTE-yellow?style=for-the-badge" alt="NOTE"/>
> Also, this demo running on HF space is GPU-disabled. So it may be slow.
""")
with st.form("SubmitForm"):
uploadedFile = st.file_uploader("Try running McQuic to compress or restore images!", type=["png", "jpg", "jpeg", "mcq"], help="Upload your image or compressed `.mcq` file here.")
cropping = st.checkbox("Cropping image to align grids.", help="If checked, the image is cropped to align feature map grids. This will make compressed file smaller.")
submitted = st.form_submit_button("Submit", help="Click to start compress/restore.")
if submitted and uploadedFile is not None:
if uploadedFile.name.endswith(".mcq"):
uploadedFile.flush()
binaryFile = File.deserialize(uploadedFile.read())
st.text(str(binaryFile))
result = decompressImage(binaryFile, model)
st.image(result.cpu().permute(1, 2, 0).numpy())
st.download_button("Click to download restored image", data=bytes(encode_png(result.cpu()).tolist()), file_name=".".join(uploadedFile.name.split(".")[:-1] + ["png"]), mime="image/png")
else:
try:
a = Image.open(uploadedFile)
except PIL.UnidentifiedImageError:
st.markdown("""
<image src="https://img.shields.io/badge/ERROR-red?style=for-the-badge" alt="ERROR"/>
> Image open failed. Please try other images.
""")
return
w, h = a.size
if HF_SPACE and (h > 3000 or w > 3000):
st.markdown("""
<image src="https://img.shields.io/badge/ERROR-red?style=for-the-badge" alt="ERROR"/>
> Image is too large. Please try other images.
""")
return
raw = torch.ByteTensor(torch.ByteStorage.from_buffer(uploadedFile.read())) # type: ignore
image = decode_image(raw, ImageReadMode.RGB).to(device)
# st.image(image.cpu().permute(1, 2, 0).numpy())
result = compressImage(image, model, cropping)
st.text(str(result))
st.download_button("Click to download compressed file", data=result.serialize(), file_name=".".join(uploadedFile.name.split(".")[:-1] + ["mcq"]), mime="image/mcq")
st.markdown("""
<br/>
<br/>
<br/>
<br/>
<br/>
<p align="center">
<a href="https://www.python.org/" target="_blank">
<image src="https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54" alt="Python"/>
</a>
<a href="https://pytorch.org/" target="_blank">
<image src="https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white" alt="PyTorch"/>
</a>
<a href="https://github.com/xiaosu-zhu/McQuic/stargazers" target="_blank">
<image src="https://img.shields.io/github/stars/xiaosu-zhu/McQuic?logo=github&style=for-the-badge" alt="Github stars"/>
</a>
<a href="https://github.com/xiaosu-zhu/McQuic/network/members" target="_blank">
<image src="https://img.shields.io/github/forks/xiaosu-zhu/McQuic?logo=github&style=for-the-badge" alt="Github forks"/>
</a>
<a href="https://github.com/xiaosu-zhu/McQuic/blob/main/LICENSE" target="_blank">
<image src="https://img.shields.io/github/license/xiaosu-zhu/McQuic?logo=github&style=for-the-badge" alt="Github license"/>
</a>
</p>
<br/>
<br/>
<br/>
<p align="center"><a href="localhost" target="_blank">CVF Open Access</a> | <a href="localhost" target="_blank">arXiv</a> | <a href="https://github.com/xiaosu-zhu/McQuic#citation" target="_blank">BibTex</a> | <a href="https://huggingface.co/spaces/xiaosu-zhu/McQuic">Demo</a></p>
""")
if __name__ == "__main__":
with torch.inference_mode():
main(False, False, 3, False)
|