File size: 7,204 Bytes
c24d39e
d5a4886
 
 
3ebf54f
d5a4886
c24d39e
 
d5a4886
 
 
 
3ebf54f
d5a4886
 
 
 
 
 
 
 
3ebf54f
d5a4886
c24d39e
 
d5a4886
 
 
89d1722
d5a4886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c24d39e
d5a4886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c24d39e
d5a4886
 
3ebf54f
c24d39e
 
 
 
 
 
 
3ebf54f
c24d39e
 
3ebf54f
 
 
d5a4886
 
c24d39e
 
 
 
 
 
 
d5a4886
c24d39e
 
d5a4886
 
c24d39e
d5a4886
 
 
 
 
 
 
 
 
 
 
 
 
c24d39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5a4886
 
c24d39e
d5a4886
 
 
 
 
 
c24d39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5a4886
 
 
c24d39e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import pathlib
import torch
import torch.hub
from torchvision.transforms.functional import convert_image_dtype
from torchvision.io.image import ImageReadMode, encode_png, decode_image
from PIL import Image
import PIL

from mcquic import Config
from mcquic.modules.compressor import BaseCompressor, Compressor
from mcquic.datasets.transforms import AlignedCrop
from mcquic.utils.specification import File
from mcquic.utils.vision import DeTransform

try:
    import streamlit as st
except:
    raise ImportError("To run `mcquic service`, please install Streamlit by `pip install streamlit` firstly.")


MODELS_URL = "https://github.com/xiaosu-zhu/McQuic/releases/download/generic/qp_3_msssim_fcc58b73.mcquic"

HF_SPACE = "HF_SPACE" in os.environ


@st.experimental_singleton
def loadModel(qp: int, local: pathlib.Path, device, mse: bool):
    ckpt = torch.hub.load_state_dict_from_url(MODELS_URL, map_location=device, check_hash=True)

    config = Config.deserialize(ckpt["config"])
    model = Compressor(**config.Model.Params).to(device)
    model.QuantizationParameter = str(local) if local is not None else str(qp)
    model.load_state_dict(ckpt["model"])
    return model



@st.cache
def compressImage(image: torch.Tensor, model: BaseCompressor, crop: bool) -> File:
    image = convert_image_dtype(image)

    if crop:
        image = AlignedCrop()(image)

    # [c, h, w]
    image = (image - 0.5) * 2

    with model._quantizer.readyForCoding() as cdfs:
        codes, binaries, headers = model.compress(image[None, ...], cdfs)

    return File(headers[0], binaries[0])


@st.cache
def decompressImage(sourceFile: File, model: BaseCompressor) -> torch.ByteTensor:
    binaries = sourceFile.Content

    with model._quantizer.readyForCoding() as cdfs:
        # [1, c, h, w]
        restored = model.decompress([binaries], cdfs, [sourceFile.FileHeader])

    # [c, h, w]
    return DeTransform()(restored[0])



def main(debug: bool, quiet: bool, qp: int, disable_gpu: bool):
    if disable_gpu or not torch.cuda.is_available():
        device = torch.device("cpu")
    else:
        device = torch.device("cuda")

    model = loadModel(3, None, device, False).eval()

    st.sidebar.markdown("""
<p align="center">
  <a href="https://github.com/xiaosu-zhu/McQuic">
    <img src="https://raw.githubusercontent.com/xiaosu-zhu/McQuic/main/assets/McQuic-light.svg" alt="McQuic" title="McQuic" width="45%"/>
  </a>
  <br/>
  <span>
    <i>a.k.a.</i> <b><i>M</i></b>ulti-<b><i>c</i></b>odebook <b><i>Qu</i></b>antizers for neural <b><i>i</i></b>mage <b><i>c</i></b>ompression
  </span>
</p>

<p align="center">
  Compressing images on-the-fly.
</p>


<image src="https://img.shields.io/badge/NOTE-yellow?style=for-the-badge" alt="NOTE"/>

> Due to resources limitation, I only provide compression service with model `qp = 3`.

<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>

<a href="https://github.com/xiaosu-zhu/McQuic">
  <image src="https://raw.githubusercontent.com/xiaosu-zhu/McQuic/main/assets/GitHub-Mark-120px-plus.png" alt="Github"/>
  <image src="https://img.shields.io/github/stars/xiaosu-zhu/McQuic?style=social" alt="Github"/>
</a>

""", unsafe_allow_html=True)

    if HF_SPACE:
        st.markdown("""
<image src="https://img.shields.io/badge/NOTE-yellow?style=for-the-badge" alt="NOTE"/>

> Due to resources limitation of HF spaces, the upload image size is restricted to lower than `3000 x 3000`.

<image src="https://img.shields.io/badge/NOTE-yellow?style=for-the-badge" alt="NOTE"/>

> Also, this demo running on HF space is GPU-disabled. So it may be slow.
""")
    with st.form("SubmitForm"):
        uploadedFile = st.file_uploader("Try running McQuic to compress or restore images!", type=["png", "jpg", "jpeg", "mcq"], help="Upload your image or compressed `.mcq` file here.")
        cropping = st.checkbox("Cropping image to align grids.", help="If checked, the image is cropped to align feature map grids. This will make compressed file smaller.")
        submitted = st.form_submit_button("Submit", help="Click to start compress/restore.")
    if submitted and uploadedFile is not None:
        if uploadedFile.name.endswith(".mcq"):
            uploadedFile.flush()

            binaryFile = File.deserialize(uploadedFile.read())

            st.text(str(binaryFile))

            result = decompressImage(binaryFile, model)
            st.image(result.cpu().permute(1, 2, 0).numpy())
            st.download_button("Click to download restored image", data=bytes(encode_png(result.cpu()).tolist()), file_name=".".join(uploadedFile.name.split(".")[:-1] + ["png"]), mime="image/png")
        else:
            try:
                a = Image.open(uploadedFile)
            except PIL.UnidentifiedImageError:
                st.markdown("""
<image src="https://img.shields.io/badge/ERROR-red?style=for-the-badge" alt="ERROR"/>

> Image open failed. Please try other images.
""")
                return
            w, h = a.size
            if HF_SPACE and (h > 3000 or w > 3000):
                st.markdown("""
<image src="https://img.shields.io/badge/ERROR-red?style=for-the-badge" alt="ERROR"/>

> Image is too large. Please try other images.
""")
                return
            raw = torch.ByteTensor(torch.ByteStorage.from_buffer(uploadedFile.read())) # type: ignore
            image = decode_image(raw, ImageReadMode.RGB).to(device)
            # st.image(image.cpu().permute(1, 2, 0).numpy())
            result = compressImage(image, model, cropping)

            st.text(str(result))

            st.download_button("Click to download compressed file", data=result.serialize(), file_name=".".join(uploadedFile.name.split(".")[:-1] + ["mcq"]), mime="image/mcq")

    st.markdown("""
<br/>
<br/>
<br/>
<br/>
<br/>


<p align="center">
  <a href="https://www.python.org/" target="_blank">
    <image src="https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54" alt="Python"/>
  </a>
  <a href="https://pytorch.org/" target="_blank">
    <image src="https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white" alt="PyTorch"/>
  </a>
  <a href="https://github.com/xiaosu-zhu/McQuic/stargazers" target="_blank">
    <image src="https://img.shields.io/github/stars/xiaosu-zhu/McQuic?logo=github&style=for-the-badge" alt="Github stars"/>
  </a>
  <a href="https://github.com/xiaosu-zhu/McQuic/network/members" target="_blank">
    <image src="https://img.shields.io/github/forks/xiaosu-zhu/McQuic?logo=github&style=for-the-badge" alt="Github forks"/>
  </a>
  <a href="https://github.com/xiaosu-zhu/McQuic/blob/main/LICENSE" target="_blank">
    <image src="https://img.shields.io/github/license/xiaosu-zhu/McQuic?logo=github&style=for-the-badge" alt="Github license"/>
  </a>
</p>

<br/>
<br/>
<br/>

<p align="center"><a href="localhost" target="_blank">CVF Open Access</a> | <a href="localhost" target="_blank">arXiv</a> | <a href="https://github.com/xiaosu-zhu/McQuic#citation" target="_blank">BibTex</a> | <a href="https://huggingface.co/spaces/xiaosu-zhu/McQuic">Demo</a></p>

""")

if __name__ == "__main__":
    with torch.inference_mode():
        main(False, False, 3, False)