Spaces:
Runtime error
Runtime error
File size: 7,598 Bytes
c24d39e ba2bd35 d5a4886 cedc10c 29caf0d c24d39e d5a4886 3ebf54f d5a4886 471186c d5a4886 c24d39e d5a4886 277a2e9 89d1722 d5a4886 ba2bd35 c30bbb7 d5a4886 ba2bd35 d5a4886 c0fb24c ba2bd35 d5a4886 72bc1c2 d5a4886 c0fb24c ba2bd35 d5a4886 72bc1c2 d5a4886 277a2e9 d5a4886 ba2bd35 d5a4886 29caf0d d5a4886 3bbf214 d5a4886 ef5107a 3ebf54f c24d39e 6bf73bb 3ebf54f 97ba26a 29caf0d 6bf73bb 3ebf54f 97ba26a d5a4886 c24d39e 3bbf214 c24d39e 6c9b00c c24d39e 3bbf214 d5a4886 6c9b00c 3bbf214 d5a4886 c24d39e d5a4886 ba2bd35 d5a4886 c0fb24c c24d39e cedc10c c24d39e 3bbf214 c24d39e 3bbf214 c24d39e cedc10c c24d39e 3bbf214 c24d39e 3bbf214 c24d39e cedc10c c24d39e ba2bd35 d5a4886 c0fb24c d5a4886 c0fb24c c24d39e 3bbf214 c24d39e 3bbf214 c24d39e 3bbf214 c24d39e 3bbf214 c24d39e 3bbf214 c24d39e 8d96cbf c24d39e 3bbf214 d5a4886 277a2e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import os
import pathlib
import torch
import torch.hub
from torchvision.transforms.functional import convert_image_dtype, pil_to_tensor
from torchvision.io.image import encode_png
from PIL import Image
import PIL
from mcquic import Config
from mcquic.modules.compressor import BaseCompressor, Compressor
from mcquic.datasets.transforms import AlignedCrop
from mcquic.utils.specification import File
from mcquic.utils.vision import DeTransform
try:
import streamlit as st
except:
raise ImportError("To run `mcquic service`, please install Streamlit by `pip install streamlit` firstly.")
MODELS_URL = "https://github.com/xiaosu-zhu/McQuic/releases/download/generic/qp_2_msssim_8e954998.mcquic"
HF_SPACE = "HF_SPACE" in os.environ
@st.experimental_singleton
def loadModel(device):
ckpt = torch.hub.load_state_dict_from_url(MODELS_URL, map_location=device, check_hash=True)
config = Config.deserialize(ckpt["config"])
model = Compressor(**config.Model.Params).to(device)
model.QuantizationParameter = "qp_2_msssim"
model.load_state_dict(ckpt["model"])
return model
@st.cache
def compressImage(image: torch.Tensor, model: BaseCompressor, crop: bool) -> File:
image = convert_image_dtype(image)
if crop:
image = AlignedCrop()(image)
# [c, h, w]
image = (image - 0.5) * 2
codes, binaries, headers = model.compress(image[None, ...])
return File(headers[0], binaries[0])
@st.cache
def decompressImage(sourceFile: File, model: BaseCompressor) -> torch.ByteTensor:
binaries = sourceFile.Content
# [1, c, h, w]
restored = model.decompress([binaries], [sourceFile.FileHeader])
# [c, h, w]
return DeTransform()(restored[0])
def main():
if not torch.cuda.is_available():
device = torch.device("cpu")
else:
device = torch.device("cuda")
model = loadModel(device).eval()
st.sidebar.markdown("""
<p align="center">
<a href="https://github.com/xiaosu-zhu/McQuic" target="_blank">
<img src="https://raw.githubusercontent.com/xiaosu-zhu/McQuic/main/assets/McQuic-light.svg" alt="McQuic" title="McQuic" width="45%"/>
</a>
<br/>
<span>
<i>a.k.a.</i> <b><i>M</i></b>ulti-<b><i>c</i></b>odebook <b><i>Qu</i></b>antizers for neural <b><i>i</i></b>mage <b><i>c</i></b>ompression
</span>
</p>
<p align="center">
Compressing images on-the-fly.
</p>
<img src="https://img.shields.io/badge/NOTE-yellow?style=for-the-badge" alt="NOTE"/>
> Due to resources limitation, I only provide compression service with model `qp = 2` targeted `ms-ssim`.
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<p align="center">
<a href="https://github.com/xiaosu-zhu/McQuic" target="_blank">
<img src="https://raw.githubusercontent.com/xiaosu-zhu/McQuic/main/assets/GitHub_Logo.png" height="16px" alt="Github"/>
<img src="https://img.shields.io/github/stars/xiaosu-zhu/McQuic?style=social" height="20px" alt="Github"/>
</a>
</p>
""", unsafe_allow_html=True)
if HF_SPACE:
st.markdown("""
<img src="https://img.shields.io/badge/NOTE-yellow?style=for-the-badge" alt="NOTE"/>
> Due to resources limitation of HF spaces, upload image size is restricted to smaller than `3000 x 3000`. Also, this demo is CPU-only and may be slow.
<img src="https://img.shields.io/badge/NOTE-yellow?style=for-the-badge" alt="NOTE"/>
> This demo is synced with main branch of `McQuic`. Some features may be unstable and changed frequently.
""", unsafe_allow_html=True)
with st.form("SubmitForm"):
uploadedFile = st.file_uploader("Try running McQuic to compress or restore images!", type=["png", "jpg", "jpeg", "mcq"], help="Upload your image or compressed `.mcq` file here.")
cropping = st.checkbox("Cropping image to align grids.", help="If checked, the image is cropped to align feature map grids. This will make compressed file smaller.")
submitted = st.form_submit_button("Submit", help="Click to start compress/restore.")
if submitted and uploadedFile is not None:
if uploadedFile.name.endswith(".mcq"):
uploadedFile.flush()
binaryFile = File.deserialize(uploadedFile.read())
st.text(str(binaryFile))
result = decompressImage(binaryFile, model)
st.image(result.cpu().permute(1, 2, 0).numpy())
downloadButton = st.empty()
done = downloadButton.download_button("Click to download restored image", data=bytes(encode_png(result.cpu()).tolist()), file_name=".".join(uploadedFile.name.split(".")[:-1] + ["png"]), mime="image/png")
if done:
downloadButton.empty()
elif uploadedFile.name.lower().endswith((".png", ".jpg", ".jpeg")):
try:
image = Image.open(uploadedFile)
except PIL.UnidentifiedImageError:
st.markdown("""
<img src="https://img.shields.io/badge/ERROR-red?style=for-the-badge" alt="ERROR"/>
> Image open failed. Please try other images.
""", unsafe_allow_html=True)
return
w, h = image.size
if HF_SPACE and (h > 3000 or w > 3000):
st.markdown("""
<img src="https://img.shields.io/badge/ERROR-red?style=for-the-badge" alt="ERROR"/>
> Image is too large. Please try other images.
""", unsafe_allow_html=True)
return
image = pil_to_tensor(image.convert("RGB")).to(device)
# st.image(image.cpu().permute(1, 2, 0).numpy())
result = compressImage(image, model, cropping)
st.text(str(result))
downloadButton = st.empty()
done = st.download_button("Click to download compressed file", data=result.serialize(), file_name=".".join(uploadedFile.name.split(".")[:-1] + ["mcq"]), mime="image/mcq")
if done:
downloadButton.empty()
else:
st.markdown("""
<img src="https://img.shields.io/badge/ERROR-red?style=for-the-badge" alt="ERROR"/>
> Not supported image formate. Please try other images.
""", unsafe_allow_html=True)
return
st.markdown("""
<br/>
<br/>
<br/>
<br/>
<br/>
<p align="center">
<a href="https://www.python.org/" target="_blank">
<img src="https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54" alt="Python"/>
</a>
<a href="https://pytorch.org/" target="_blank">
<img src="https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white" alt="PyTorch"/>
</a>
<a href="https://github.com/xiaosu-zhu/McQuic/stargazers" target="_blank">
<img src="https://img.shields.io/github/stars/xiaosu-zhu/McQuic?logo=github&style=for-the-badge" alt="Github stars"/>
</a>
<a href="https://github.com/xiaosu-zhu/McQuic/network/members" target="_blank">
<img src="https://img.shields.io/github/forks/xiaosu-zhu/McQuic?logo=github&style=for-the-badge" alt="Github forks"/>
</a>
<a href="https://github.com/xiaosu-zhu/McQuic/blob/main/LICENSE" target="_blank">
<img src="https://img.shields.io/github/license/xiaosu-zhu/McQuic?logo=github&style=for-the-badge" alt="Github license"/>
</a>
</p>
<br/>
<br/>
<br/>
<p align="center"><a href="localhost" target="_blank">CVF Open Access</a> | <a href="https://arxiv.org/abs/2203.10897" target="_blank">arXiv</a> | <a href="https://github.com/xiaosu-zhu/McQuic#citation" target="_blank">BibTex</a> | <a href="https://huggingface.co/spaces/xiaosu-zhu/McQuic" target="_blank">Demo</a></p>
""", unsafe_allow_html=True)
if __name__ == "__main__":
with torch.inference_mode():
main()
|