McQuic / stCompressService.py
xiaosu-zhu's picture
Auto deploy
627b096
raw
history blame
7.98 kB
import os
import torch
import torch.hub
from torchvision.transforms.functional import convert_image_dtype, pil_to_tensor
from torchvision.io.image import encode_png
from PIL import Image
import PIL
from mcquic import Config
from mcquic.modules.compressor import BaseCompressor, Compressor
from mcquic.datasets.transforms import AlignedCrop
from mcquic.utils.specification import File
from mcquic.utils.vision import DeTransform
from mcquic.rans import RansEncoder, RansDecoder
try:
import streamlit as st
except:
raise ImportError("To run `mcquic service`, please install Streamlit by `pip install streamlit` firstly.")
MODELS_URL = "https://github.com/xiaosu-zhu/McQuic/releases/download/generic/qp_2_msssim_fcc58b73.mcquic"
HF_SPACE = "HF_SPACE" in os.environ
@st.experimental_singleton
def loadModel(device):
ckpt = torch.hub.load_state_dict_from_url(MODELS_URL, map_location=device, check_hash=True)
config = Config.deserialize(ckpt["config"])
model = Compressor(**config.Model.Params).to(device).eval()
model.QuantizationParameter = "qp_2_msssim"
model.load_state_dict(ckpt["model"])
return torch.jit.script(model), RansEncoder(), RansDecoder()
@st.cache
def compressImage(encoder: RansEncoder, image: torch.Tensor, model: BaseCompressor, crop: bool) -> File:
image = convert_image_dtype(image)
if crop:
image = AlignedCrop()(image)
# [c, h, w]
image = (image - 0.5) * 2
with model.readyForCoding() as cdfs:
codes, size = model.encode(image[None, ...])
binaries, headers = model.compress(encoder, codes, size, cdfs)
return File(headers[0], binaries[0])
@st.cache
def decompressImage(decoder: RansDecoder, sourceFile: File, model: BaseCompressor) -> torch.ByteTensor:
binaries = sourceFile.Content
with model.readyForCoding() as cdfs:
codes, imageSize = model.decompress(decoder, [binaries], cdfs, [sourceFile.FileHeader])
# [1, c, h, w]
restored = model.decode(codes, imageSize)
# [c, h, w]
return DeTransform()(restored[0])
def main():
if not torch.cuda.is_available():
device = torch.device("cpu")
else:
device = torch.device("cuda")
model, encoder, decoder = loadModel(device)
st.sidebar.markdown("""
<p align="center">
<a href="https://github.com/xiaosu-zhu/McQuic" target="_blank">
<img src="https://raw.githubusercontent.com/xiaosu-zhu/McQuic/main/assets/McQuic-light.svg" alt="McQuic" title="McQuic" width="45%"/>
</a>
<br/>
<span>
<i>a.k.a.</i> <b><i>M</i></b>ulti-<b><i>c</i></b>odebook <b><i>Qu</i></b>antizers for neural <b><i>i</i></b>mage <b><i>c</i></b>ompression
</span>
</p>
<p align="center">
Compressing images on-the-fly.
</p>
<img src="https://img.shields.io/badge/NOTE-yellow?style=for-the-badge" alt="NOTE"/>
> Due to resources limitation, I only provide compression service with model `qp = 2` targeted `ms-ssim`.
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<p align="center">
<a href="https://github.com/xiaosu-zhu/McQuic" target="_blank">
<img src="https://raw.githubusercontent.com/xiaosu-zhu/McQuic/main/assets/GitHub_Logo.png" height="16px" alt="Github"/>
<img src="https://img.shields.io/github/stars/xiaosu-zhu/McQuic?style=social" height="20px" alt="Github"/>
</a>
</p>
""", unsafe_allow_html=True)
if HF_SPACE:
st.markdown("""
<img src="https://img.shields.io/badge/NOTE-yellow?style=for-the-badge" alt="NOTE"/>
> Due to resources limitation of HF spaces, upload image size is restricted to smaller than `3000 x 3000`. Also, this demo is CPU-only and may be slow.
<img src="https://img.shields.io/badge/NOTE-yellow?style=for-the-badge" alt="NOTE"/>
> This demo is synced with main branch of `McQuic`. Some features may be unstable and changed frequently.
""", unsafe_allow_html=True)
with st.form("SubmitForm"):
uploadedFile = st.file_uploader("Try running McQuic to compress or restore images!", type=["png", "jpg", "jpeg", "mcq"], help="Upload your image or compressed `.mcq` file here.")
cropping = st.checkbox("Cropping image to align grids.", help="If checked, the image is cropped to align feature map grids. This will make compressed file smaller.")
submitted = st.form_submit_button("Submit", help="Click to start compress/restore.")
if submitted and uploadedFile is not None:
if uploadedFile.name.endswith(".mcq"):
uploadedFile.flush()
binaryFile = File.deserialize(uploadedFile.read())
st.text(str(binaryFile))
result = decompressImage(encoder, binaryFile, model)
st.image(result.cpu().permute(1, 2, 0).numpy())
downloadButton = st.empty()
done = downloadButton.download_button("Click to download restored image", data=bytes(encode_png(result.cpu()).tolist()), file_name=".".join(uploadedFile.name.split(".")[:-1] + ["png"]), mime="image/png")
if done:
downloadButton.empty()
elif uploadedFile.name.lower().endswith((".png", ".jpg", ".jpeg")):
try:
image = Image.open(uploadedFile)
except PIL.UnidentifiedImageError:
st.markdown("""
<img src="https://img.shields.io/badge/ERROR-red?style=for-the-badge" alt="ERROR"/>
> Image open failed. Please try other images.
""", unsafe_allow_html=True)
return
w, h = image.size
if HF_SPACE and (h > 3000 or w > 3000):
st.markdown("""
<img src="https://img.shields.io/badge/ERROR-red?style=for-the-badge" alt="ERROR"/>
> Image is too large. Please try other images.
""", unsafe_allow_html=True)
return
image = pil_to_tensor(image.convert("RGB")).to(device)
# st.image(image.cpu().permute(1, 2, 0).numpy())
result = compressImage(decoder, image, model, cropping)
st.text(str(result))
downloadButton = st.empty()
done = st.download_button("Click to download compressed file", data=result.serialize(), file_name=".".join(uploadedFile.name.split(".")[:-1] + ["mcq"]), mime="image/mcq")
if done:
downloadButton.empty()
else:
st.markdown("""
<img src="https://img.shields.io/badge/ERROR-red?style=for-the-badge" alt="ERROR"/>
> Not supported image formate. Please try other images.
""", unsafe_allow_html=True)
return
st.markdown("""
<br/>
<br/>
<br/>
<br/>
<br/>
<p align="center">
<a href="https://www.python.org/" target="_blank">
<img src="https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54" alt="Python"/>
</a>
<a href="https://pytorch.org/" target="_blank">
<img src="https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white" alt="PyTorch"/>
</a>
<a href="https://github.com/xiaosu-zhu/McQuic/stargazers" target="_blank">
<img src="https://img.shields.io/github/stars/xiaosu-zhu/McQuic?logo=github&style=for-the-badge" alt="Github stars"/>
</a>
<a href="https://github.com/xiaosu-zhu/McQuic/network/members" target="_blank">
<img src="https://img.shields.io/github/forks/xiaosu-zhu/McQuic?logo=github&style=for-the-badge" alt="Github forks"/>
</a>
<a href="https://github.com/xiaosu-zhu/McQuic/blob/main/LICENSE" target="_blank">
<img src="https://img.shields.io/github/license/xiaosu-zhu/McQuic?logo=github&style=for-the-badge" alt="Github license"/>
</a>
</p>
<br/>
<br/>
<br/>
<p align="center"><a href="localhost" target="_blank">CVF Open Access</a> | <a href="https://arxiv.org/abs/2203.10897" target="_blank">arXiv</a> | <a href="https://github.com/xiaosu-zhu/McQuic#citation" target="_blank">BibTex</a> | <a href="https://huggingface.co/spaces/xiaosu-zhu/McQuic" target="_blank">Demo</a></p>
""", unsafe_allow_html=True)
if __name__ == "__main__":
with torch.inference_mode():
main()