Spaces:
Runtime error
Runtime error
xiaowang7777
commited on
Commit
•
9e169b0
1
Parent(s):
bbb2c84
fush
Browse files- app.py +87 -1
- requirements.txt +2 -0
app.py
CHANGED
@@ -1,3 +1,89 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
|
5 |
+
nstruct_pipeline_3b = pipeline(model="fnlp/moss-moon-003-sft-int8", torch_dtype=torch.float, trust_remote_code=True,
|
6 |
+
device_map="auto")
|
7 |
+
|
8 |
+
|
9 |
+
def generate(query, temperature, top_p, top_k, max_new_tokens):
|
10 |
+
return nstruct_pipeline_3b(query, temperature, top_p, top_k, max_new_tokens)
|
11 |
+
|
12 |
+
|
13 |
+
with gr.Blocks() as demo:
|
14 |
+
gr.Markdown(
|
15 |
+
"""<h1><center>Databricks Dolly LLMs</center></h1>
|
16 |
+
|
17 |
+
This demo compares the smaller two variants of the Databricks Dolly models, the [2.8B](https://huggingface.co/databricks/dolly-v2-3b), and the [6.9B](https://huggingface.co/databricks/dolly-v2-7b). They are all based on the EluetherAI's Pythia models fine-tuned with approx [15K instruction demonstrations](https://huggingface.co/datasets/HuggingFaceH4/databricks_dolly_15k)
|
18 |
+
"""
|
19 |
+
)
|
20 |
+
with gr.Row():
|
21 |
+
with gr.Column():
|
22 |
+
with gr.Row():
|
23 |
+
instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")
|
24 |
+
with gr.Row():
|
25 |
+
with gr.Column():
|
26 |
+
with gr.Row():
|
27 |
+
temperature = gr.Slider(
|
28 |
+
label="Temperature",
|
29 |
+
value=0.5,
|
30 |
+
minimum=0.0,
|
31 |
+
maximum=2.0,
|
32 |
+
step=0.1,
|
33 |
+
interactive=True,
|
34 |
+
info="Higher values produce more diverse outputs",
|
35 |
+
)
|
36 |
+
with gr.Column():
|
37 |
+
with gr.Row():
|
38 |
+
top_p = gr.Slider(
|
39 |
+
label="Top-p (nucleus sampling)",
|
40 |
+
value=0.95,
|
41 |
+
minimum=0.0,
|
42 |
+
maximum=1,
|
43 |
+
step=0.05,
|
44 |
+
interactive=True,
|
45 |
+
info="Higher values sample fewer low-probability tokens",
|
46 |
+
)
|
47 |
+
with gr.Column():
|
48 |
+
with gr.Row():
|
49 |
+
top_k = gr.Slider(
|
50 |
+
label="Top-k",
|
51 |
+
value=50,
|
52 |
+
minimum=0.0,
|
53 |
+
maximum=100,
|
54 |
+
step=1,
|
55 |
+
interactive=True,
|
56 |
+
info="Sample from a shortlist of top-k tokens",
|
57 |
+
)
|
58 |
+
with gr.Column():
|
59 |
+
with gr.Row():
|
60 |
+
max_new_tokens = gr.Slider(
|
61 |
+
label="Maximum new tokens",
|
62 |
+
value=256,
|
63 |
+
minimum=0,
|
64 |
+
maximum=2048,
|
65 |
+
step=5,
|
66 |
+
interactive=True,
|
67 |
+
info="The maximum number of new tokens to generate",
|
68 |
+
)
|
69 |
+
with gr.Row():
|
70 |
+
submit = gr.Button("Generate Answers")
|
71 |
+
with gr.Row():
|
72 |
+
with gr.Column():
|
73 |
+
with gr.Box():
|
74 |
+
gr.Markdown("**Dolly 3B**")
|
75 |
+
output_3b = gr.Markdown()
|
76 |
+
with gr.Column():
|
77 |
+
with gr.Box():
|
78 |
+
gr.Markdown("**Dolly 7B**")
|
79 |
+
output_7b = gr.Markdown()
|
80 |
+
# with gr.Column():
|
81 |
+
# with gr.Box():
|
82 |
+
# gr.Markdown("**Dolly 12B**")
|
83 |
+
# output_12b = gr.Markdown()
|
84 |
+
submit.click(generate, inputs=[instruction, temperature, top_p, top_k, max_new_tokens],
|
85 |
+
outputs=[output_3b, output_7b])
|
86 |
+
instruction.submit(generate, inputs=[instruction, temperature, top_p, top_k, max_new_tokens],
|
87 |
+
outputs=[output_3b, output_7b])
|
88 |
+
|
89 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
accelerate>=0.12.0
|
2 |
+
transformers[torch]==4.25.1
|