Spaces:
Running
Running
File size: 16,137 Bytes
216efed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import os
import sys
if "APP_PATH" in os.environ:
app_path = os.path.abspath(os.environ["APP_PATH"])
if os.getcwd() != app_path:
# fix sys.path for import
os.chdir(app_path)
if app_path not in sys.path:
sys.path.append(app_path)
import gradio as gr
import torch
import torchaudio
import torchvision
import matplotlib.pyplot as plt
import re
import random
import string
from audioseal import AudioSeal
import videoseal
from videoseal.utils.display import save_video_audio_to_mp4
# Load video_model if not already loaded in reload mode
if 'video_model' not in globals():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the VideoSeal model
video_model = videoseal.load("videoseal")
video_model.eval()
video_model.to(device)
video_model_nbytes = int(video_model.embedder.msg_processor.nbits / 8)
# Load the AudioSeal model
# Load audio_generator if not already loaded in reload mode
if 'audio_generator' not in globals():
audio_generator = AudioSeal.load_generator("audioseal_wm_16bits")
audio_generator = audio_generator.to(device)
audio_generator_nbytes = int(audio_generator.msg_processor.nbits / 8)
# Load audio_detector if not already loaded in reload mode
if 'audio_detector' not in globals():
audio_detector = AudioSeal.load_detector("audioseal_detector_16bits")
audio_detector = audio_detector.to(device)
def load_video(file):
# Read the video and convert to tensor format
video, audio, info = torchvision.io.read_video(file, output_format="TCHW", pts_unit="sec")
assert "audio_fps" in info, "The input video must contain an audio track. Simply refer to the main videoseal inference code if not."
# Normalize the video frames to the range [0, 1]
# audio = audio.float()
# video = video.float() / 255.0
# Normalize the video frames to the range [0, 1] and trim to 3 second
fps = 24
video = video[:fps * 3].float() / 255.0
sample_rate = info["audio_fps"]
audio = audio[:, :int(sample_rate * 3)].float()
return video, info["video_fps"], audio, info["audio_fps"]
def generate_msg_pt_by_format_string(format_string, bytes_count):
msg_hex = format_string.replace("-", "")
hex_length = bytes_count * 2
binary_list = []
for i in range(0, len(msg_hex), hex_length):
chunk = msg_hex[i:i+hex_length]
binary = bin(int(chunk, 16))[2:].zfill(bytes_count * 8)
binary_list.append([int(b) for b in binary])
# torch.randint(0, 2, (1, 16), dtype=torch.int32)
msg_pt = torch.tensor(binary_list, dtype=torch.int32)
return msg_pt.to(device)
def embed_watermark(output_file, msg_v, msg_a, video_only, video, fps, audio, sample_rate):
# Perform watermark embedding on video
with torch.no_grad():
outputs = video_model.embed(video, is_video=True, msgs=msg_v)
# Extract the results
video_w = outputs["imgs_w"] # Watermarked video frames
video_msgs = outputs["msgs"] # Watermark messages
if not video_only:
# Resample the audio to 16kHz for watermarking
audio_16k = torchaudio.transforms.Resample(sample_rate, 16000)(audio)
# If the audio has more than one channel, average all channels to 1 channel
if audio_16k.shape[0] > 1:
audio_16k_mono = torch.mean(audio_16k, dim=0, keepdim=True)
else:
audio_16k_mono = audio_16k
# Add batch dimension to the audio tensor
audio_16k_mono_batched = audio_16k_mono.unsqueeze(0).to(device)
# Get the watermark for the audio
with torch.no_grad():
watermark = audio_generator.get_watermark(
audio_16k_mono_batched, 16000, message=msg_a
)
# Embed the watermark in the audio
audio_16k_w = audio_16k_mono_batched + watermark
# Remove batch dimension from the watermarked audio tensor
audio_16k_w = audio_16k_w.squeeze(0)
# If the original audio had more than one channel, duplicate the watermarked audio to all channels
if audio_16k.shape[0] > 1:
audio_16k_w = audio_16k_w.repeat(audio_16k.shape[0], 1)
# Resample the watermarked audio back to the original sample rate
audio_w = torchaudio.transforms.Resample(16000, sample_rate).to(device)(audio_16k_w)
else:
audio_w = audio
# for Incompatible pixel format 'rgb24' for codec 'libx264', auto-selecting format 'yuv444p'
video_w = video_w.flip(1)
# Save the watermarked video and audio
save_video_audio_to_mp4(
video_tensor=video_w,
audio_tensor=audio_w,
fps=int(fps),
audio_sample_rate=int(sample_rate),
output_filename=output_file,
)
print(f"encoded message: \n Audio: {msg_a} \n Video {video_msgs[0]}")
return video_w, audio_w
def generate_format_string_by_msg_pt(msg_pt, bytes_count):
hex_length = bytes_count * 2
binary_int = 0
for bit in msg_pt:
binary_int = (binary_int << 1) | int(bit.item())
hex_string = format(binary_int, f'0{hex_length}x')
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
format_hex = "-".join(split_hex)
return hex_string, format_hex
def detect_watermark(video_only, video, audio, sample_rate):
# Detect watermarks in the video
with torch.no_grad():
msg_extracted = video_model.extract_message(video)
print(f"Extracted message from video: {msg_extracted}")
if not video_only:
if len(audio.shape) == 2:
audio = audio.unsqueeze(0).to(device) # batchify
# if stereo convert to mono
if audio.shape[1] > 1:
audio = torch.mean(audio, dim=1, keepdim=True)
# Resample the audio to 16kHz for detectting
audio_16k = torchaudio.transforms.Resample(sample_rate, 16000).to(device)(audio)
# Detect watermarks in the audio
with torch.no_grad():
result, message = audio_detector.detect_watermark(audio_16k, 16000)
# pred_prob is a tensor of size batch x 2 x frames, indicating the probability (positive and negative) of watermarking for each frame
# A watermarked audio should have pred_prob[:, 1, :] > 0.5
# message_prob is a tensor of size batch x 16, indicating of the probability of each bit to be 1.
# message will be a random tensor if the detector detects no watermarking from the audio
pred_prob, message_prob = audio_detector(audio_16k, sample_rate)
print(f"Detection result for audio: {result}")
print(f"Extracted message from audio: {message}")
return msg_extracted, (result, message, pred_prob, message_prob)
else:
return msg_extracted, None
def get_waveform_and_specgram(waveform, sample_rate):
# If the audio has more than one channel, average all channels to 1 channel
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
waveform = waveform.squeeze().detach().cpu().numpy()
num_frames = waveform.shape[-1]
time_axis = torch.arange(0, num_frames) / sample_rate
figure, (ax1, ax2) = plt.subplots(2, 1)
ax1.plot(time_axis, waveform, linewidth=1)
ax1.grid(True)
ax2.specgram(waveform, Fs=sample_rate)
figure.suptitle(f"Waveform and specgram")
return figure
def generate_hex_format_regex(bytes_count):
hex_length = bytes_count * 2
hex_string = 'F' * hex_length
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
format_like = "-".join(split_hex)
regex_pattern = '^' + '-'.join([r'[0-9A-Fa-f]{4}'] * len(split_hex)) + '$'
return format_like, regex_pattern
def generate_hex_random_message(bytes_count):
hex_length = bytes_count * 2
hex_string = ''.join(random.choice(string.hexdigits) for _ in range(hex_length))
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
random_str = "-".join(split_hex)
return random_str, "".join(split_hex)
with gr.Blocks(title="VideoSeal") as demo:
gr.Markdown("""
# VideoSeal Demo
The current video will be YUV444P encoded, truncated to 3 seconds for use, and multi-channel audio will be merged into a single channel for processing.
Find the project [here](https://github.com/facebookresearch/videoseal.git).
""")
with gr.Tabs():
with gr.TabItem("Embed Watermark"):
with gr.Row():
with gr.Column():
embedding_vid = gr.Video(label="Input Video")
with gr.Row():
with gr.Column():
embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks")
format_like, regex_pattern = generate_hex_format_regex(video_model_nbytes)
msg, _ = generate_hex_random_message(video_model_nbytes)
embedding_msg = gr.Textbox(
label=f"Message ({video_model_nbytes} bytes hex string)",
info=f"format like {format_like}",
value=msg,
interactive=False, show_copy_button=True)
with gr.Column():
embedding_only_vid = gr.Checkbox(label="Only Video", value=False)
embedding_specgram = gr.Checkbox(label="Show specgram", value=False, info="Show debug information")
format_like_a, regex_pattern_a = generate_hex_format_regex(audio_generator_nbytes)
msg_a, _ = generate_hex_random_message(audio_generator_nbytes)
embedding_msg_a = gr.Textbox(
label=f"Audio Message ({audio_generator_nbytes} bytes hex string)",
info=f"format like {format_like_a}",
value=msg_a,
interactive=False, show_copy_button=True)
embedding_btn = gr.Button("Embed Watermark")
with gr.Column():
marked_vid = gr.Video(label="Output Audio", show_download_button=True)
specgram_original = gr.Plot(label="Original Audio", format="png", visible=False)
specgram_watermarked = gr.Plot(label="Watermarked Audio", format="png", visible=False)
def change_embedding_type(video_only):
return [gr.update(visible=not video_only, value=False),gr.update(visible=not video_only)]
embedding_only_vid.change(
fn=change_embedding_type,
inputs=[embedding_only_vid],
outputs=[embedding_specgram, embedding_msg_a]
)
def change_embedding_type(type):
if type == "random":
msg, _ = generate_hex_random_message(video_model_nbytes)
msg_a,_ = generate_hex_random_message(audio_generator_nbytes)
return [gr.update(interactive=False, value=msg),gr.update(interactive=False, value=msg_a)]
else:
return [gr.update(interactive=True),gr.update(interactive=True)]
embedding_type.change(
fn=change_embedding_type,
inputs=[embedding_type],
outputs=[embedding_msg, embedding_msg_a]
)
def check_embedding_msg(msg, msg_a):
if not re.match(regex_pattern, msg):
gr.Warning(
f"Invalid format. Please use like '{format_like}'",
duration=0)
if not re.match(regex_pattern_a, msg_a):
gr.Warning(
f"Invalid format. Please use like '{format_like_a}'",
duration=0)
embedding_msg.change(
fn=check_embedding_msg,
inputs=[embedding_msg, embedding_msg_a],
outputs=[]
)
def run_embed_watermark(file, video_only, show_specgram, msg, msg_a):
if file is None:
raise gr.Error("No file uploaded", duration=5)
if not re.match(regex_pattern, msg):
raise gr.Error(f"Invalid format. Please use like '{format_like}'", duration=5)
if not re.match(regex_pattern_a, msg_a):
raise gr.Error(f"Invalid format. Please use like '{format_like_a}'", duration=5)
msg_pt = generate_msg_pt_by_format_string(msg, video_model_nbytes)
msg_pt_a = generate_msg_pt_by_format_string(msg_a, audio_generator_nbytes)
video, fps, audio, rate = load_video(file)
output_path = file + '.marked.mp4'
_, audio_w = embed_watermark(output_path, msg_pt, msg_pt_a, video_only, video, fps, audio, rate)
if show_specgram:
fig_original = get_waveform_and_specgram(audio, rate)
fig_watermarked = get_waveform_and_specgram(audio_w, rate)
return [
output_path,
gr.update(visible=True, value=fig_original),
gr.update(visible=True, value=fig_watermarked)]
else:
return [
output_path,
gr.update(visible=False),
gr.update(visible=False)]
embedding_btn.click(
fn=run_embed_watermark,
inputs=[embedding_vid, embedding_only_vid, embedding_specgram, embedding_msg, embedding_msg_a],
outputs=[marked_vid, specgram_original, specgram_watermarked]
)
with gr.TabItem("Detect Watermark"):
with gr.Row():
with gr.Column():
detecting_vid = gr.Video(label="Input Video")
detecting_only_vid = gr.Checkbox(label="Only Video", value=False)
detecting_btn = gr.Button("Detect Watermark")
with gr.Column():
predicted_messages = gr.JSON(label="Detected Messages")
def run_detect_watermark(file, video_only):
if file is None:
raise gr.Error("No file uploaded", duration=5)
video, _, audio, rate = load_video(file)
if video_only:
msg_extracted, _ = detect_watermark(video_only, video, audio, rate)
audio_json = None
else:
msg_extracted, (result, message, pred_prob, message_prob) = detect_watermark(video_only, video, audio, rate)
_, fromat_msg = generate_format_string_by_msg_pt(message[0], audio_generator_nbytes)
sum_above_05 = (pred_prob[:, 1, :] > 0.5).sum(dim=1)
audio_json = {
"socre": result,
"message": fromat_msg,
"frames_count_all": pred_prob.shape[2],
"frames_count_above_05": sum_above_05[0].item(),
"bits_probability": message_prob[0].tolist(),
"bits_massage": message[0].tolist()
}
_, fromat_msg = generate_format_string_by_msg_pt(msg_extracted[0], video_model_nbytes)
# Create message output as JSON
message_json = {
"video": {
"message": fromat_msg,
},
"audio:": audio_json
}
return message_json
detecting_btn.click(
fn=run_detect_watermark,
inputs=[detecting_vid, detecting_only_vid],
outputs=[predicted_messages]
)
if __name__ == "__main__":
demo.launch()
|