Spaces:
Runtime error
Runtime error
File size: 28,707 Bytes
216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed f07b84d 216efed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 |
import os
import sys
if "APP_PATH" in os.environ:
app_path = os.path.abspath(os.environ["APP_PATH"])
if os.getcwd() != app_path:
# fix sys.path for import
os.chdir(app_path)
if app_path not in sys.path:
sys.path.append(app_path)
import gradio as gr
import torch
import torchaudio
import torchvision
import matplotlib.pyplot as plt
import re
import math
import random
import string
import ffmpeg
import subprocess
import numpy as np
import tqdm
from audioseal import AudioSeal
import videoseal
from videoseal.utils.display import save_video_audio_to_mp4
# Load video_model if not already loaded in reload mode
if 'video_model' not in globals():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the VideoSeal model
video_model = videoseal.load("videoseal")
video_model.eval()
video_model.to(device)
video_model_nbytes = int(video_model.embedder.msg_processor.nbits / 8)
# Load the AudioSeal model
# Load audio_generator if not already loaded in reload mode
if 'audio_generator' not in globals():
audio_generator = AudioSeal.load_generator("audioseal_wm_16bits")
audio_generator = audio_generator.to(device)
audio_generator_nbytes = int(audio_generator.msg_processor.nbits / 8)
# Load audio_detector if not already loaded in reload mode
if 'audio_detector' not in globals():
audio_detector = AudioSeal.load_detector("audioseal_detector_16bits")
audio_detector = audio_detector.to(device)
def generate_msg_pt_by_format_string(format_string, bytes_count):
msg_hex = format_string.replace("-", "")
hex_length = bytes_count * 2
binary_list = []
for i in range(0, len(msg_hex), hex_length):
chunk = msg_hex[i:i+hex_length]
binary = bin(int(chunk, 16))[2:].zfill(bytes_count * 8)
binary_list.append([int(b) for b in binary])
# torch.randint(0, 2, (1, 16), dtype=torch.int32)
msg_pt = torch.tensor(binary_list, dtype=torch.int32)
return msg_pt.to(device)
def generate_format_string_by_msg_pt(msg_pt, bytes_count):
if msg_pt is None: return '', None
hex_length = bytes_count * 2
binary_int = 0
for bit in msg_pt:
binary_int = (binary_int << 1) | int(bit.item())
hex_string = format(binary_int, f'0{hex_length}x')
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
format_hex = "-".join(split_hex)
return hex_string, format_hex
def generate_hex_format_regex(bytes_count):
hex_length = bytes_count * 2
hex_string = 'F' * hex_length
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
format_like = "-".join(split_hex)
regex_pattern = '^' + '-'.join([r'[0-9A-Fa-f]{4}'] * len(split_hex)) + '$'
return format_like, regex_pattern
def generate_hex_random_message(bytes_count):
hex_length = bytes_count * 2
hex_string = ''.join(random.choice(string.hexdigits) for _ in range(hex_length))
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
random_str = "-".join(split_hex)
return random_str, "".join(split_hex)
def embed_video_clip(
model,
clip: np.ndarray,
msgs: torch.Tensor
) -> np.ndarray:
clip_tensor = torch.tensor(clip, dtype=torch.float32).to(device).permute(0, 3, 1, 2) / 255.0
outputs = model.embed(clip_tensor, msgs=msgs, is_video=True)
processed_clip = outputs["imgs_w"]
processed_clip = (processed_clip * 255.0).byte().permute(0, 2, 3, 1).cpu().numpy()
return processed_clip
def embed_video(
model,
input_path: str,
output_path: str,
msgs: torch.Tensor,
chunk_size: int,
crf: int = 23
) -> None:
# Read video dimensions
probe = ffmpeg.probe(input_path)
video_info = next(stream for stream in probe['streams'] if stream['codec_type'] == 'video')
width = int(video_info['width'])
height = int(video_info['height'])
fps = float(video_info['r_frame_rate'].split('/')[0]) / float(video_info['r_frame_rate'].split('/')[1])
num_frames = int(video_info['nb_frames'])
# Open the input video
process1 = (
ffmpeg
.input(input_path)
.output('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(width, height), r=fps)
.run_async(pipe_stdout=True, pipe_stderr=subprocess.PIPE)
)
# Open the output video
process2 = (
ffmpeg
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(width, height), r=fps)
.output(output_path, vcodec='libx264', pix_fmt='yuv420p', r=fps, crf=crf)
.overwrite_output()
.run_async(pipe_stdin=True, pipe_stderr=subprocess.PIPE)
)
# Process the video
frame_size = width * height * 3
chunk = np.zeros((chunk_size, height, width, 3), dtype=np.uint8)
frame_count = 0
pbar = tqdm.tqdm(total=num_frames, unit='frame', desc="Watermark video embedding")
while True:
# TODO block EOF on Windows
in_bytes = process1.stdout.read(frame_size)
if not in_bytes:
break
frame = np.frombuffer(in_bytes, np.uint8).reshape([height, width, 3])
chunk[frame_count % chunk_size] = frame
frame_count += 1
pbar.update(1)
if frame_count % chunk_size == 0:
processed_frame = embed_video_clip(model, chunk, msgs)
process2.stdin.write(processed_frame.tobytes())
process1.stdout.close()
process2.stdin.close()
process1.wait()
process2.wait()
return
def get_sample_size(sample_fmt):
if sample_fmt == 's16':
return 2, np.int16
elif sample_fmt == 's16p':
return 2, np.float16
elif sample_fmt == 'flt':
return 4, np.int32
elif sample_fmt == 'fltp':
return 4, np.float32
elif sample_fmt == 's32':
return 4, np.int32
elif sample_fmt == 's32p':
return 4, np.float32
elif sample_fmt == 'u8':
return 1, np.int8
else:
raise ValueError(f"Unsupported sample_fmt: {sample_fmt}")
def embed_audio_clip(
model,
clip: np.ndarray,
msgs: torch.Tensor,
sample_rate
) -> np.ndarray:
clip_tensor = torch.tensor(clip, dtype=torch.float32).to(device)
# Resample the audio to 16kHz for watermarking
audio_16k = torchaudio.transforms.Resample(sample_rate, 16000).to(device)(clip_tensor)
# If the audio has more than one channel, average all channels to 1 channel
if audio_16k.shape[0] > 1:
audio_16k_mono = torch.mean(audio_16k, dim=0, keepdim=True)
else:
audio_16k_mono = audio_16k
# Add batch dimension to the audio tensor
audio_16k_mono_batched = audio_16k_mono.unsqueeze(0)
# Get the watermark for the audio
with torch.no_grad():
watermark = model.get_watermark(
audio_16k_mono_batched, 16000, message=msgs
)
# Embed the watermark in the audio
audio_16k_w = audio_16k_mono_batched + watermark
# Remove batch dimension from the watermarked audio tensor
audio_16k_w = audio_16k_w.squeeze(0)
# If the original audio had more than one channel, duplicate the watermarked audio to all channels
if audio_16k.shape[0] > 1:
audio_16k_w = audio_16k_w.repeat(audio_16k.shape[0], 1)
# Resample the watermarked audio back to the original sample rate
audio_w = torchaudio.transforms.Resample(16000, sample_rate).to(device)(audio_16k_w)
processed_clip = audio_w.cpu().numpy()
return processed_clip
def embed_audio(
model,
input_path: str,
output_path: str,
msgs: torch.Tensor,
chunk_size: int
) -> None:
# Read audio dimensions
probe = ffmpeg.probe(input_path)
audio_info = next(stream for stream in probe['streams'] if stream['codec_type'] == 'audio')
sample_rate = int(audio_info['sample_rate'])
sample_fmt = audio_info['sample_fmt']
channels = int(audio_info['channels'])
duration = float(audio_info['duration'])
# CASE 1 Read audio all at once
# audio_data, stderr_output = (
# ffmpeg
# .input(input_path, loglevel='debug')
# .output('pipe:', format='f32le', acodec='pcm_f32le', ar=sample_rate, ac=channels)
# .run(capture_stdout=True, capture_stderr=True)
# )
# audio_data = process.stdout.read()
# print("audio numpy total size:", len(audio_data))
# process.stdout.close()
# process.wait()
# stderr_output = process.stderr.read().decode('utf-8')
# print(stderr_output)
# CASE 2 Read async
# NOTE loglevel='debug' not work on Windows
# NOTE format='wav' data size(4104768) bigger than format='s16le'(4104688)
# process = (
# ffmpeg
# .input(input_path, loglevel='debug')
# .output('pipe:', format='f32le', acodec='pcm_f32le', ar=sample_rate, ac=channels)
# .run_async(pipe_stdout=True, pipe_stderr=subprocess.PIPE)
# )
# audio_data = process.stdout.read()
# print("audio numpy total size:", len(audio_data))
# process.stdout.close()
# process.wait()
# stderr_output = process.stderr.read().decode('utf-8')
# print(stderr_output)
# stderr_output example:
#
# # AVIOContext @ 0x5d878ea02e80] Statistics: 4104688 bytes written, 0 seeks, 251 writeouts
# # [out#0/f32le @ 0x5d878eaf31c0] Output file #0 (pipe:):
# # [out#0/f32le @ 0x5d878eaf31c0] Output stream #0:0 (audio): 251 frames encoded (513086 samples); 251 packets muxed (4104688 bytes);
# # [out#0/f32le @ 0x5d878eaf31c0] Total: 251 packets (4104688 bytes) muxed
# CASE 3 Read by torchaudio
# NOTE torchvision read audio format is f32le
# _, audio, info = torchvision.io.read_video(input_path, output_format="TCHW")
# print("audio numpy total size:", audio.nbytes)
# Open the input audio
process1 = (
ffmpeg
.input(input_path)
.output('pipe:', format='f32le', acodec='pcm_f32le', ac=channels, ar=sample_rate)
.run_async(pipe_stdout=True, pipe_stderr=subprocess.PIPE)
)
# Open the output audio
process2 = (
ffmpeg
.input('pipe:', format='f32le', ac=channels, ar=sample_rate)
.output(output_path, format='wav', acodec='pcm_f32le', ac=channels, ar=sample_rate)
# not work
# .output(output_path, acodec='libfdk_aac', ac=channels, ar=sample_rate)
.overwrite_output()
.run_async(pipe_stdin=True, pipe_stderr=subprocess.PIPE)
)
# CASE read all and write all
# while True:
# audio_data = process1.stdout.read()
# if not audio_data:
# break
# try:
# process2.stdin.write(audio_data)
# except BrokenPipeError:
# print("Broken pipe: process2 has closed the input.")
# break
# Process the audio
sample_size, sample_type = get_sample_size(sample_fmt)
second_size = sample_size * channels * sample_rate
chunk = np.zeros((chunk_size, sample_rate, channels), dtype=sample_type)
second_count = 0
pbar = tqdm.tqdm(total=math.ceil(duration), unit='second', desc="Watermark audio embedding")
while True:
in_bytes = process1.stdout.read(second_size)
if not in_bytes:
break
frame = np.frombuffer(in_bytes, sample_type)
frame = frame.reshape((-1, channels))
chunk[second_count % chunk_size, :len(frame)] = frame
second_count += 1
pbar.update(1)
if second_count % chunk_size == 0:
if msgs is None:
process2.stdin.write(in_bytes)
else:
clip = np.concatenate(chunk, axis=0).T
processed_frame = embed_audio_clip(model, clip, msgs, sample_rate)
process2.stdin.write(processed_frame.T.tobytes())
process1.stdout.close()
process2.stdin.close()
process1.wait()
process2.wait()
# CASE print stderr
# stderr_output1 = process1.stderr.read().decode('utf-8')
# stderr_output2 = process2.stderr.read().decode('utf-8')
# print("Process 1 stderr:")
# print(stderr_output1)
# print("Process 2 stderr:")
# print(stderr_output2)
return
def embed_watermark(input_path, output_path, msg_v, msg_a, video_only, progress):
output_path_video = output_path + ".video.mp4"
embed_video(video_model, input_path, output_path_video, msg_v, 16)
output_path_audio = output_path + ".audio.m4a"
if video_only:
msg_a = None
embed_audio(audio_generator, input_path, output_path_audio, msg_a, 3)
# Use FFmpeg to add audio to the video
final_command = [
'ffmpeg',
'-i', output_path_video,
'-i', output_path_audio,
'-c:v', 'copy',
'-c:a', 'aac',
'-strict', 'experimental',
'-y', output_path
]
subprocess.run(final_command, check=True)
return
def detect_video_clip(
model,
clip: np.ndarray
) -> torch.Tensor:
clip_tensor = torch.tensor(clip, dtype=torch.float32).permute(0, 3, 1, 2) / 255.0
outputs = model.detect(clip_tensor, is_video=True)
output_bits = outputs["preds"][:, 1:] # exclude the first which may be used for detection
return output_bits
def detect_video(
model,
input_path: str,
chunk_size: int
) -> None:
# Read video dimensions
probe = ffmpeg.probe(input_path)
video_info = next(stream for stream in probe['streams'] if stream['codec_type'] == 'video')
width = int(video_info['width'])
height = int(video_info['height'])
fps = float(video_info['r_frame_rate'].split('/')[0]) / float(video_info['r_frame_rate'].split('/')[1])
num_frames = int(video_info['nb_frames'])
# Open the input video
process1 = (
ffmpeg
.input(input_path)
.output('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(width, height), r=fps)
.run_async(pipe_stdout=True, pipe_stderr=subprocess.PIPE)
)
# Process the video
frame_size = width * height * 3
chunk = np.zeros((chunk_size, height, width, 3), dtype=np.uint8)
frame_count = 0
soft_msgs = []
pbar = tqdm.tqdm(total=num_frames, unit='frame', desc="Watermark video detecting")
while True:
in_bytes = process1.stdout.read(frame_size)
if not in_bytes:
break
frame = np.frombuffer(in_bytes, np.uint8).reshape([height, width, 3])
chunk[frame_count % chunk_size] = frame
frame_count += 1
pbar.update(1)
if frame_count % chunk_size == 0:
soft_msgs.append(detect_video_clip(model, chunk))
process1.stdout.close()
process1.wait()
soft_msgs = torch.cat(soft_msgs, dim=0)
return soft_msgs
def detect_audio_clip(
model,
clip: np.ndarray,
sample_rate
) -> torch.Tensor:
clip_tensor = torch.tensor(clip, dtype=torch.float32).to(device)
# Resample the audio to 16kHz for watermarking
audio_16k = torchaudio.transforms.Resample(sample_rate, 16000).to(device)(clip_tensor)
# If the audio has more than one channel, average all channels to 1 channel
if audio_16k.shape[0] > 1:
audio_16k_mono = torch.mean(audio_16k, dim=0, keepdim=True)
else:
audio_16k_mono = audio_16k
# Add batch dimension to the audio tensor
audio_16k_mono_batched = audio_16k_mono.unsqueeze(0)
# Detect watermarks in the audio
with torch.no_grad():
result, message = model.detect_watermark(
audio_16k_mono_batched, 16000
)
# pred_prob is a tensor of size batch x 2 x frames, indicating the probability (positive and negative) of watermarking for each frame
# A watermarked audio should have pred_prob[:, 1, :] > 0.5
# message_prob is a tensor of size batch x 16, indicating of the probability of each bit to be 1.
# message will be a random tensor if the detector detects no watermarking from the audio
pred_prob, message_prob = model(audio_16k_mono_batched, sample_rate)
# print(f"Detection result for audio: {result}")
# _, format_msg = generate_format_string_by_msg_pt(message[0], audio_generator_nbytes)
# print(f"Extracted message from audio: {message}: {format_msg}")
# print(f"Extracted pred_prob from audio: {pred_prob.shape}")
# print(f"Extracted message_prob from audio: {message_prob}")
# print(f"Extracted shape from audio 16k: {audio_16k_mono_batched.shape}")
# print(f"Extracted shape from audio original: {clip_tensor.shape}")
return result, message, pred_prob, message_prob
def detect_audio(
model,
input_path: str,
chunk_size: int
) -> None:
# Read audio dimensions
probe = ffmpeg.probe(input_path)
audio_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'audio']
if len(audio_streams) == 0:
gr.Warning("No audio stream found in the input file.")
return None, None, None, None
audio_info = audio_streams[0]
sample_rate = int(audio_info['sample_rate'])
sample_fmt = audio_info['sample_fmt']
channels = int(audio_info['channels'])
duration = float(audio_info['duration'])
# Open the input audio
process1 = (
ffmpeg
.input(input_path)
.output('pipe:', format='f32le', acodec='pcm_f32le', ac=channels, ar=sample_rate)
.run_async(pipe_stdout=True, pipe_stderr=subprocess.PIPE)
)
# Process the audio
sample_size, sample_type = get_sample_size(sample_fmt)
second_size = sample_size * channels * sample_rate
chunk = np.zeros((chunk_size, sample_rate, channels), dtype=sample_type)
second_count = 0
soft_result = []
soft_message = []
soft_pred_prob = []
soft_message_prob = []
pbar = tqdm.tqdm(total=math.ceil(duration), unit='second', desc="Watermark audio detecting")
while True:
in_bytes = process1.stdout.read(second_size)
if not in_bytes:
break
frame = np.frombuffer(in_bytes, sample_type)
frame = frame.reshape((-1, channels))
chunk[second_count % chunk_size, :len(frame)] = frame
second_count += 1
pbar.update(1)
if second_count % chunk_size == 0:
clip = np.concatenate(chunk, axis=0).T
# print(f"Detection audio second: {second_count-chunk_size}-{second_count}")
result, message, pred_prob, message_prob = detect_audio_clip(model, clip, sample_rate)
soft_result.append(result)
soft_message.append(message)
soft_pred_prob.append(pred_prob)
soft_message_prob.append(message_prob)
process1.stdout.close()
process1.wait()
soft_message = torch.cat(soft_message, dim=0)
soft_pred_prob = torch.cat(soft_pred_prob, dim=0)
soft_message_prob = torch.cat(soft_message_prob, dim=0)
return (soft_result, soft_message, soft_pred_prob, soft_message_prob)
def detect_watermark(input_path, video_only):
msgs_v_frame = detect_video(video_model, input_path, 16)
msgs_v_avg = msgs_v_frame.mean(dim=0) # Average the predictions across all frames
msgs_v_frame = (msgs_v_frame > 0).to(int)
msgs_v_avg = (msgs_v_avg > 0).to(int)
msgs_v_unique, msgs_v_counts = torch.unique(msgs_v_frame, dim=0, return_counts=True)
msgs_v_most = None
if len(msgs_v_frame) > len(msgs_v_counts) > 0:
msgs_v_most_idx = torch.argmax(msgs_v_counts)
msgs_v_most = msgs_v_unique[msgs_v_most_idx]
msgs_a_most = msgs_a_res = msgs_a_frame = msgs_a_pred = msgs_a_prob = None
if not video_only:
msgs_a_res, msgs_a_frame, msgs_a_pred, msgs_a_prob = detect_audio(audio_detector, input_path, 1)
if msgs_a_res is not None:
msgs_a_res_not_zero = [i for i, x in enumerate(msgs_a_res) if x > 0.5]
msgs_a_frame_not_zero = msgs_a_frame[msgs_a_res_not_zero]
msgs_a_unique, msgs_a_counts = torch.unique(msgs_a_frame_not_zero, dim=0, return_counts=True)
if len(msgs_a_counts) > 0:
msgs_a_most_idx = torch.argmax(msgs_a_counts)
msgs_a_most = msgs_a_unique[msgs_a_most_idx]
return msgs_v_most, msgs_v_avg, msgs_v_frame, msgs_a_most, msgs_a_res, msgs_a_frame, msgs_a_pred, msgs_a_prob
with gr.Blocks(title="VideoSeal") as demo:
gr.Markdown("""
# VideoSeal Demo
For video, each frame will be watermarked and detected.
For audio, each 3 seconds will be watermarked, and each second will be detected.
**NOTE: The watermarked process will modify both audio and video.
The video will be re-encoded to yuv420p using libx264,
and the audio will be duplicated from mono 16kHz and resampled back to the original channel sample rate.**
Find the project [here](https://github.com/facebookresearch/videoseal.git).
""")
with gr.Tabs():
with gr.TabItem("Embed Watermark"):
with gr.Row():
with gr.Column():
embedding_vid = gr.Video(label="Input Video")
with gr.Row():
with gr.Column():
embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks")
format_like_v, regex_pattern_v = generate_hex_format_regex(video_model_nbytes)
msg_v, _ = generate_hex_random_message(video_model_nbytes)
embedding_msg_v = gr.Textbox(
label=f"Message ({video_model_nbytes} bytes hex string)",
info=f"format like {format_like_v}",
value=msg_v,
interactive=False, show_copy_button=True)
with gr.Column():
embedding_only_vid = gr.Checkbox(label="Only Video", value=False)
format_like_a, regex_pattern_a = generate_hex_format_regex(audio_generator_nbytes)
msg_a, _ = generate_hex_random_message(audio_generator_nbytes)
embedding_msg_a = gr.Textbox(
label=f"Audio Message ({audio_generator_nbytes} bytes hex string)",
info=f"format like {format_like_a}",
value=msg_a,
interactive=False, show_copy_button=True)
embedding_btn = gr.Button("Embed Watermark")
with gr.Column():
marked_vid = gr.Video(label="Output Audio", show_download_button=True)
def change_embedding_type(video_only):
return gr.update(visible=not video_only)
embedding_only_vid.change(
fn=change_embedding_type,
inputs=[embedding_only_vid],
outputs=[embedding_msg_a]
)
def change_embedding_type(type):
if type == "random":
msg_v, _ = generate_hex_random_message(video_model_nbytes)
msg_a,_ = generate_hex_random_message(audio_generator_nbytes)
return [gr.update(interactive=False, value=msg_v),gr.update(interactive=False, value=msg_a)]
else:
return [gr.update(interactive=True),gr.update(interactive=True)]
embedding_type.change(
fn=change_embedding_type,
inputs=[embedding_type],
outputs=[embedding_msg_v, embedding_msg_a]
)
def check_embedding_msg(msg_v, msg_a):
if not re.match(regex_pattern_v, msg_v):
gr.Warning(
f"Invalid format. Please use like '{format_like_v}'",
duration=0)
if not re.match(regex_pattern_a, msg_a):
gr.Warning(
f"Invalid format. Please use like '{format_like_a}'",
duration=0)
embedding_msg_v.change(
fn=check_embedding_msg,
inputs=[embedding_msg_v, embedding_msg_a],
outputs=[]
)
embedding_msg_a.change(
fn=check_embedding_msg,
inputs=[embedding_msg_v, embedding_msg_a],
outputs=[]
)
def run_embed_watermark(input_path, video_only, msg_v, msg_a, progress=gr.Progress(track_tqdm=True)):
if input_path is None:
raise gr.Error("No file uploaded", duration=5)
if not re.match(regex_pattern_v, msg_v):
raise gr.Error(f"Invalid format. Please use like '{format_like_v}'", duration=5)
if not re.match(regex_pattern_a, msg_a):
raise gr.Error(f"Invalid format. Please use like '{format_like_a}'", duration=5)
msg_pt_v = generate_msg_pt_by_format_string(msg_v, video_model_nbytes)
msg_pt_a = generate_msg_pt_by_format_string(msg_a, audio_generator_nbytes)
if video_only:
output_path = os.path.join(os.path.dirname(input_path), "__".join([msg_v]) + '.mp4')
else:
output_path = os.path.join(os.path.dirname(input_path), "__".join([msg_v, msg_a]) + '.mp4')
embed_watermark(input_path, output_path, msg_pt_v, msg_pt_a, video_only, progress)
return output_path
embedding_btn.click(
fn=run_embed_watermark,
inputs=[embedding_vid, embedding_only_vid, embedding_msg_v, embedding_msg_a],
outputs=[marked_vid]
)
with gr.TabItem("Detect Watermark"):
with gr.Row():
with gr.Column():
detecting_vid = gr.Video(label="Input Video")
detecting_only_vid = gr.Checkbox(label="Only Video", value=False)
detecting_btn = gr.Button("Detect Watermark")
with gr.Column():
predicted_messages = gr.JSON(label="Detected Messages")
def run_detect_watermark(file, video_only, progress=gr.Progress(track_tqdm=True)):
if file is None:
raise gr.Error("No file uploaded", duration=5)
msgs_v_most, msgs_v_avg, msgs_v_frame, msgs_a_most, msgs_a_res, msgs_a_frame, msgs_a_pred, msgs_a_prob = detect_watermark(file, video_only)
_, format_msg_v_most = generate_format_string_by_msg_pt(msgs_v_most, video_model_nbytes)
_, format_msg_v_avg = generate_format_string_by_msg_pt(msgs_v_avg, video_model_nbytes)
format_msg_v_frames = {}
for idx, msg in enumerate(msgs_v_frame):
_, format_msg = generate_format_string_by_msg_pt(msg, video_model_nbytes)
format_msg_v_frames[f"{idx}"] = format_msg
video_json = {
"most": format_msg_v_most,
"avg": format_msg_v_avg,
"frames": format_msg_v_frames
}
if msgs_a_res is None:
audio_json = None
else:
_, format_msg_a_most = generate_format_string_by_msg_pt(msgs_a_most, audio_generator_nbytes)
format_msg_a_seconds = {}
for idx, (result, message, pred_prob, message_prob) in enumerate(zip(msgs_a_res, msgs_a_frame, msgs_a_pred, msgs_a_prob)):
_, format_msg = generate_format_string_by_msg_pt(message, audio_generator_nbytes)
sum_above_05 = (pred_prob[1, :] > 0.5).sum(dim=0)
format_msg_a_seconds[f"{idx}"] = {
"socre": result,
"message": format_msg,
"frames_count_all": pred_prob.shape[1],
"frames_count_above_05": sum_above_05.item(),
"bits_probability": message_prob.tolist(),
"bits_massage": message.tolist()
}
audio_json = {
"most": format_msg_a_most,
"seconds": format_msg_a_seconds
}
# Create message output as JSON
message_json = {
"video": video_json,
"audio:": audio_json
}
return message_json
detecting_btn.click(
fn=run_detect_watermark,
inputs=[detecting_vid, detecting_only_vid],
outputs=[predicted_messages]
)
if __name__ == "__main__":
demo.launch()
|