Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,186 Bytes
abf3d6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import gradio as gr
from tryon_inference import run_inference
import os
import numpy as np
from PIL import Image
import tempfile
def gradio_inference(
image_data,
garment,
num_steps=50,
guidance_scale=30.0,
seed=-1,
size=(576,768)
):
"""Wrapper function for Gradio interface"""
# Use temporary directory
with tempfile.TemporaryDirectory() as tmp_dir:
# Save inputs to temp directory
temp_image = os.path.join(tmp_dir, "image.png")
temp_mask = os.path.join(tmp_dir, "mask.png")
temp_garment = os.path.join(tmp_dir, "garment.png")
# Extract image and mask from ImageEditor data
image = image_data["background"]
mask = image_data["layers"][0] # First layer contains the mask
# Convert to numpy array and process mask
mask_array = np.array(mask)
is_black = np.all(mask_array < 10, axis=2)
mask = Image.fromarray(((~is_black) * 255).astype(np.uint8))
# Save files to temp directory
image.save(temp_image)
mask.save(temp_mask)
garment.save(temp_garment)
try:
# Run inference
_, tryon_result = run_inference(
image_path=temp_image,
mask_path=temp_mask,
garment_path=temp_garment,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
size=size
)
return tryon_result
except Exception as e:
raise gr.Error(f"Error during inference: {str(e)}")
def create_demo():
with gr.Blocks() as demo:
gr.Markdown("""
# CATVTON FLUX Virtual Try-On Demo
Upload a model image, an agnostic mask, and a garment image to generate virtual try-on results.
""")
with gr.Column():
with gr.Row():
with gr.Column():
image_input = gr.ImageMask(
label="Model Image (Draw mask where garment should go)",
type="pil",
height=576,
)
gr.Examples(
examples=[
["./example/person/00008_00.jpg"],
["./example/person/00055_00.jpg"],
["./example/person/00057_00.jpg"],
["./example/person/00067_00.jpg"],
["./example/person/00069_00.jpg"],
],
inputs=[image_input],
label="Person Images",
)
with gr.Column():
garment_input = gr.Image(label="Garment Image", type="pil", height=576)
gr.Examples(
examples=[
["./example/garment/04564_00.jpg"],
["./example/garment/00055_00.jpg"],
["./example/garment/00057_00.jpg"],
["./example/garment/00067_00.jpg"],
["./example/garment/00069_00.jpg"],
],
inputs=[garment_input],
label="Garment Images",
)
with gr.Row():
num_steps = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="Number of Steps"
)
guidance_scale = gr.Slider(
minimum=1.0,
maximum=50.0,
value=30.0,
step=0.5,
label="Guidance Scale"
)
seed = gr.Slider(
minimum=-1,
maximum=2147483647,
step=1,
value=-1,
label="Seed (-1 for random)"
)
submit_btn = gr.Button("Generate Try-On", variant="primary")
with gr.Column():
tryon_output = gr.Image(label="Try-On Result")
with gr.Row():
gr.Markdown("""
### Notes:
- The model image should be a full-body photo
- The mask should indicate the region where the garment will be placed
- The garment image should be on a clean background
""")
submit_btn.click(
fn=gradio_inference,
inputs=[
image_input,
garment_input,
num_steps,
guidance_scale,
seed
],
outputs=[tryon_output],
api_name="try-on"
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue() # Enable queuing for multiple users
demo.launch(
share=True,
server_name="0.0.0.0" # Makes the server accessible from other machines
) |