File size: 6,372 Bytes
a6d7aa6
 
abf3d6e
 
 
 
 
 
a6d7aa6
 
7b183da
a6d7aa6
7b183da
 
 
a6d7aa6
4fb0ca5
7b183da
 
f6916ac
7b183da
a6d7aa6
7b183da
 
f6916ac
a6d7aa6
 
 
d572fbe
abf3d6e
 
 
 
 
 
a6d7aa6
 
abf3d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6d7aa6
abf3d6e
 
 
 
 
 
a6d7aa6
abf3d6e
 
 
 
 
a6d7aa6
 
7b183da
a6d7aa6
 
 
 
 
 
afad7b5
a6d7aa6
 
 
 
 
 
 
 
 
abf3d6e
a6d7aa6
 
 
 
 
 
 
 
 
 
abf3d6e
 
a6d7aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abf3d6e
a6d7aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abf3d6e
a6d7aa6
 
 
 
 
 
 
 
 
 
 
abf3d6e
a6d7aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abf3d6e
7b183da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import spaces

import gradio as gr
from tryon_inference import run_inference
import os
import numpy as np
from PIL import Image
import tempfile
import torch
from diffusers import FluxTransformer2DModel, FluxFillPipeline
import subprocess

subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

print('Loading diffusion model ...')
transformer = FluxTransformer2DModel.from_pretrained(
    "xiaozaa/catvton-flux-alpha", 
    torch_dtype=dtype
)
pipe = FluxFillPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    transformer=transformer,
    torch_dtype=dtype
).to(device)
print('Loading Finished!')

@spaces.GPU(duration=120)
def gradio_inference(
    image_data, 
    garment, 
    num_steps=50, 
    guidance_scale=30.0, 
    seed=-1, 
    width=768,
    height=1024
):
    """Wrapper function for Gradio interface"""
    # Use temporary directory
    with tempfile.TemporaryDirectory() as tmp_dir:
        # Save inputs to temp directory
        temp_image = os.path.join(tmp_dir, "image.png")
        temp_mask = os.path.join(tmp_dir, "mask.png")
        temp_garment = os.path.join(tmp_dir, "garment.png")
        
        # Extract image and mask from ImageEditor data
        image = image_data["background"]
        mask = image_data["layers"][0]  # First layer contains the mask
        
        # Convert to numpy array and process mask
        mask_array = np.array(mask)
        is_black = np.all(mask_array < 10, axis=2)
        mask = Image.fromarray(((~is_black) * 255).astype(np.uint8))
        
        # Save files to temp directory
        image.save(temp_image)
        mask.save(temp_mask)
        garment.save(temp_garment)
        
        try:
            # Run inference
            _, tryon_result = run_inference(
                pipe=pipe,
                image_path=temp_image,
                mask_path=temp_mask,
                garment_path=temp_garment,
                num_steps=num_steps,
                guidance_scale=guidance_scale,
                seed=seed,
                size=(width, height)
            )
            return tryon_result
        except Exception as e:
            raise gr.Error(f"Error during inference: {str(e)}")

with gr.Blocks() as demo:
    gr.Markdown("""
    # CATVTON FLUX Virtual Try-On Demo
    Upload a model image, draw a mask, and a garment image to generate virtual try-on results.
    
    [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/xiaozaa/catvton-flux-alpha)
    [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/nftblackmagic/catvton-flux)
    """)
    
    # gr.Video("example/github.mp4", label="Demo Video: How to use the tool")
    
    with gr.Column():
        with gr.Row():
            with gr.Column():
                image_input = gr.ImageMask(
                    label="Model Image (Click 'Edit' and draw mask over the clothing area)",
                    type="pil",
                    height=600,
                    width=300
                )
                gr.Examples(
                    examples=[
                        ["./example/person/00008_00.jpg"],
                        ["./example/person/00055_00.jpg"],
                        ["./example/person/00057_00.jpg"],
                        ["./example/person/00067_00.jpg"],
                        ["./example/person/00069_00.jpg"],
                    ],
                    inputs=[image_input],
                    label="Person Images",
                )
            with gr.Column():
                garment_input = gr.Image(label="Garment Image", type="pil", height=600, width=300)
                gr.Examples(
                    examples=[
                        ["./example/garment/04564_00.jpg"],
                        ["./example/garment/00055_00.jpg"],
                        ["./example/garment/00396_00.jpg"],
                        ["./example/garment/00067_00.jpg"],
                        ["./example/garment/00069_00.jpg"],
                    ],
                    inputs=[garment_input],
                    label="Garment Images",
                ) 
            with gr.Column():
                tryon_output = gr.Image(label="Try-On Result", height=600, width=300)
            
        with gr.Row():
            num_steps = gr.Slider(
                minimum=1, 
                maximum=100, 
                value=30, 
                step=1, 
                label="Number of Steps"
            )
            guidance_scale = gr.Slider(
                minimum=1.0, 
                maximum=50.0, 
                value=30.0, 
                step=0.5, 
                label="Guidance Scale"
            )
            seed = gr.Slider(
                minimum=-1,
                maximum=2147483647,
                step=1,
                value=-1,
                label="Seed (-1 for random)"
            )
            width = gr.Slider(
                minimum=256,
                maximum=1024,
                step=64,
                value=768,
                label="Width"
            )
            height = gr.Slider(
                minimum=256,
                maximum=1024,
                step=64,
                value=1024,
                label="Height"
            )
            
        
        submit_btn = gr.Button("Generate Try-On", variant="primary")
        
            
    with gr.Row():
        gr.Markdown("""
        ### Notes:
        - The model is trained on VITON-HD dataset. It focuses on the woman upper body try-on generation.
        - The mask should indicate the region where the garment will be placed.
        - The garment image should be on a clean background.
        - The model is not perfect. It may generate some artifacts.
        - The model is slow. Please be patient.
        - The model is just for research purpose.
        """)
    
    submit_btn.click(
        fn=gradio_inference,
        inputs=[
            image_input,
            garment_input,
            num_steps,
            guidance_scale,
            seed,
            width,
            height
        ],
        outputs=[tryon_output],
        api_name="try-on"
    )


demo.launch()